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Abstract 

Water system planning and management is the science between the natural environment 

and human society. This dissertation explores the coevolution in complex adaptive water 

systems from long-term planning to short-term responses to advance our understanding of 

interactions between natural and human systems using computational modeling approaches. 

This dissertation investigates the effect of the social norm on farmers’ water diversion 

behaviors interacting with the hydrological environment through a two-way coupling 

model. Coupled models bidirectionally bridge the information flow between RiverWare, a 

commonly adopted water planning model, and an agent-based model (ABM), a human 

model constructed from a bottom-up modeling logic. ABM can capture the heterogeneity 

of human actors (farmers) and reveal the emergence of collective patterns. The coupled 

models are applied to show how the changing water allocation policy impact agents’ 

characteristics (e.g., risk attitudes). To further explore the coupled models’ characteristics, 

an open-source Python package, Hydrological model for Coupled Natural-Human Systems, 

is developed to facilitate the complex adaptive water systems (CAWS) modeling process 

and conduct an uncertainty analysis. This dissertation analyzes how the model output 

uncertainty in nature and human systems vary with different ABM complexities concerning 

uncertainty sources like climate change scenarios uncertainty, internal climate variability, 

and different model configurations with parameter sets or model structures that are equally 

capable of producing similar outcomes using the law of total variance. The last research 

topic shifts the focus from long-term planning to short-term responses. Those responses 

are viewed as the drivers accumulating to form the trend of long-term changes. This 

dissertation quantifies the compounding risks of flood caused by storms and cyber-physical 
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attacks in a smart stormwater system, a pond-conduit network that has water level sensors 

and outflow gate actuators to be remotely controlled by a real-time control system modeled 

by a linear quadratic Gaussian controller. The numerical experiments illustrate how the 

maliciously injected data impact the system operation and the pattern of flooding risks in 

the urban area. The results serve as an initial step to discussing the potential human 

responses toward compounding risks that might trigger the long-term evolution of CAWS. 

In sum, this dissertation contributes to advancing the understanding of coevolution in 

CAWS and encourages future work to develop a holistic framework linking the 

perspectives of long-term planning and short-term responses in CAWS modeling. 
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Chapter 1: Introduction 

Initiated by the Harvard Water Program in the 1960s (Maass et al., 1962; Reuss, 2003), 

complex water resources management problems have been addressed by combining 

operations research, statistics, and economics methods under the stationary assumption in 

the early days. However, the ignorance of the changing climate and adaptability of human 

behaviors, such as reservoir operations, off-stream water diversions, and urbanization, 

might deviate modeling results from the time-variant reality and bias the associated policy 

decisions (Milly et al., 2008). For example, while farmers’ annual water diversions amount 

for irrigation may rely on the economic status of growing crop types and the overall 

condition of the hydrological regime, the water supply limitation, affected by the changing 

climate and the total water demands of individual water users, could alter farmers water 

use decisions. Such interactions could lead to a long-term regime shift in both natural and 

human systems. This feedback cycle highlights the significance of advancing our 

understanding of the co-evolution (i.e., bidirectional interactions; Brown et al., 2015; 

Sivapalan and Blöschl, 2015) between natural and human systems, so-called coupled 

natural human systems (CNHS; Bauch et al., 2016; Liu et al., 2007; Wada et al., 2017) or 

socio-environmental systems (SES; Elsawah et al., 2020), and the corresponding short-

term responses that drive long-term co-evolutions. Here, we refer CNHS to complex 

adaptive water systems (CAWS; Yang et al., 2009; Yang et al., 2020).  

Projecting or modeling characteristic changes of human behavior like risk attitudes 

is challenging, despite the fact that the co-evolution mechanism has been used to explain 

the offsetting behavior (Campbell et al., 2004; Fielding et al., 2012), where the feedback 

of human behaviors toward the changing policy jeopardizes the original intention or the 
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effectiveness of the newly introduced policy. Similarly, due to the modeling challenge, the 

well-recognized psychological factor driving human behaviors, the social norm effect (i.e., 

the informal rules that govern behavior in groups and societies; Ajzen, 1991; Bicchieri and 

Muldoon, 2014; Cedeno-Mieles et al., 2020; Chen et al., 2012, Niles and Mueller, 2016), 

has not yet been thoroughly investigated in the CAWS model (Groeneveld et al., 2017; 

Kremmydas et al., 2018). The underlying question that interests the water system 

community is whether the social norm structure affects the model on results and is worth 

the extra model complexity and data acquisition costs. Such issues indicate the need for a 

modeling method that can identify potential behavior characteristic changes (e.g., risk 

attitudes) and test human actors’ interactions (e.g., social norms) to better inform policy 

for long-term planning.  

Two-way coupling is one of the techniques to bidirectionally link natural and 

human models (Hyun et al., 2019; Lin et al., 2022), whereas agent-based modeling (ABM) 

is commonly used in describing heterogeneous human actors (i.e., agents) from a bottom-

up point of view. Each agent has a unique set of attributes governing its behaviors and 

interactions with other agents and the environment. However, the integrity of the coupled 

model is often constrained by the original software. While some existing hydrological 

model software like Neitsch et al. (2011) and Liang et al. (1996) can incorporate human 

decision units, the option that allows users to choose among exogenous or endogenous 

human components is often not supported. For example, reservoir releases can be modeled 

by exogenous inputs like historical daily time series records or represented by a decision-

making model to endogenously and dynamically simulate water releases. Such freedom is 

critical when we face a lack of data or other limitations in CAWS modeling. Another 
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limitation of two-way coupling is modelers often need to reconstruct the model (structure) 

for every study area, namely, lack of generality. These highlight the need for new modeling 

tools targeting code integrity so that modelers can focus more on the science instead of the 

technical challenges, especially when dealing with more complex CAWS research. 

When more complex models have been built to address human behaviors in CAWS 

(Zellner, 2008), the model uncertainty issue has become a concern. With more 

sophisticated modeling methods and the growing number of parameters, handling model 

uncertainty becomes increasingly challenging (Srikrishnan and Keller, 2021), which could 

significantly affect the confidence of model results’ inference and interpretation (Allison 

et al., 2018; Kelly et al., 2013; Sun et al., 2016). The growing model complexity in CAWS 

modeling directs us to focus on parameter and structural uncertainties, so-called 

equifinality. Equifinality, first introduced into hydrological modeling by Beven (1993), 

describes a situation where multiple model structures and/or parameter sets are equally 

capable of reproducing a similar/acceptable (not necessarily identical) hydrological 

outcome given a set of observed data (Beven, 2006). Namely, a more complex model may 

suffer a more severe equifinality with limited data (Srikrishnan and Keller, 2021). While a 

few recent studies (Ekblad and Herman, 2021; Khatami et al., 2019; Williams et al., 2020) 

try to partially solve this puzzle, uncertainty studies and equifinality issues of coupled 

natural human models in CAWS are still in their infant stage (Elsawah et al., 2020). 

Furthermore, how different coupled models’ structural assumptions impact the simulation 

uncertainty, which directly links to informing planning and management, remains almost 

unexplored. 
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In addition to long-term planning purposes, coupled models in CAWS can also 

simulate various short-term human responses (Thonicke et al., 2020) and help researchers 

understand the co-evolution caused by natural-hazard-induced disasters. For example, it 

will be helpful for disaster adaptation policy if a model can simulate the process of how 

the flooding impact of Hurricane Sandy in 2012 triggered New York City to build barriers 

to protect its critical infrastructures from floodwater, storms, and other impacts of a 

changing climate. Furthermore, natural hazards are not the only factor that could cause a 

disaster and potentially trigger co-evolution (Adamo et al., 2021). For example, Bowman 

Avenue Dam, 30 miles north of Manhattan, was detected to be cyber-attacked in 2013 

(Hassanzadeh et al., 2020). Although no damages resulted from the incident, this event 

raises awareness of the potential impact of human interventions, where the such impact 

could be even worse when accompanied by natural hazards. However, the “compounding 

impacts” from natural hazards and human interventions are not well-studied. We argue that 

these compounding impacts involving natural and human factors play an important role in 

proposing strategies for short-term responses; or, broadly, driving the long-term planning 

for the future human society under the umbrella of the co-evolution concept.  

In sum, we identify several knowledge gaps in understanding co-evolution in 

CAWS. The gaps include (1) insufficient understanding of behavioral change modeling 

and the role of social norm modeling structure, (2) insufficient coupled ABM modeling 

tools for CAWS, (3) unclear uncertainty properties in CAWS modeling, and (4) unclear 

short-term responses toward compounding impacts of natural hazards and human 

interventions. These gaps lead to the overarching goal of this dissertation to advance the 

understanding of co-evolution in CAWS modeling and quantify CAWS modeling 
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uncertainty via case studies in different applications, from long-term planning to 

short-term responses. We broke down the overarching dissertation goal into Chapters 2 

to 5 (Figure 1-1) to address the four identified gaps respectively. These chapters are self-

contained and are formulated as individual scientific papers that can be read separately. 

Altogether, they advance the understanding of co-evolution in CAWS modeling and 

quantify CAWS modeling uncertainty via case studies in different applications, from long-

term planning to short-term responses. The contents of these chapters are condensed into 

the following paragraphs. 

 

Figure 1-1. Linkages of Chapters 2 to 5 toward co-evolution exploration in CAWS from 

long-term planning to short-term responses. 

 

Chapter 2 investigates the co-evolution issues of social norms and changing human 

behavior characteristics in water resources allocation in agricultural water systems via two-

way coupling RiverWare (a river-reservoir routing model) with a water diversion ABM 

(i.e., a human decision model) in the Yakima River Basin, Washington, US. Using this 

two-way-coupled model, we demonstrate the effect of social norms among farmers (i.e., 

the influence on irrigation decisions from neighbors) by local sensitivity analysis and test 
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a “what-if” water reallocation scenario to evaluate the influence of changing water policies 

on human behavior characteristics (e.g., risk attitudes). Finally, we discuss the potential 

benefits of coupled models in informing multi-level water resources governance. For 

example, how to address co-management (e.g., collaboration) issues across power-

imbalanced governance levels or human actors. 

Chapter 3 addresses the gap of insufficient CAWS modeling tools that allow users 

to freely integrate exogenous or endogenous human components into a process-based 

hydrological model. To achieve this, we developed a semi-distributed Hydrological model 

for Coupled Natural–Human Systems, HydroCNHS. The HydroCNHS is an open-source 

Python package supporting four Application Programming Interfaces (APIs), including 

Dam API, RiverDiv API, Conveying API, and InSitu API, for integrating, respectively, 

customized man-made infrastructures such as reservoirs, off-stream diversions, trans-basin 

aqueducts, and drainage systems that abstract human behaviors (e.g., operator and farmers’ 

water use decisions). Namely, users have complete freedom in designing human decision 

models programmed with the ABM concept. They can easily plug “agents” into 

HydroCNHS using APIs, where within-subbasin and inter-subbasin (i.e., river) routing 

logics for maintaining the water balance are handled by HydroCNHS internally. In addition, 

HydroCNHS uses a single model configuration file to organize input features for the 

hydrological model and case-specific human systems models. Also, HydroCNHS supports 

model calibration using parallel computing power. 

Chapter 4 contributes to a better understanding of CAWS modeling properties 

through an uncertainty analysis of coupled hydrological and water diversion ABMs built 

by HydroCNHS (Chapter2) in an exploratory analysis. We propose five coupled model 
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types that have different model complexities of human behavior settings (i.e., model 

structure and the number of calibrated parameters): one static, two adaptive, and two 

learning adaptive. Learning adaptive models (the most complex) have both the learning 

component (capturing long-term trends) and the adaptive component (capturing short-term 

variations), while adaptive models omit the learning component. The static model is the 

simplest model without learning and adaptive components. Applying the law of total 

variance, the model output uncertainty is decomposed into three sources: (1) climate 

change scenario uncertainty, (2) climate internal variability, and (3) equifinality (defined 

as parameter sets or model structures that are equally capable of producing similar model 

outcomes).  

Chapter 5 explores the compounding impacts of floods from storms and cyber-

physical attacks in a smart stormwater system, standing for a pond-conduit network that 

has water level sensors and outflow gate actuators at each pond for real-time control. We 

develop a cyber-attacker mathematical framework considering sensor noises and weather 

forecast uncertainties to inform system planning and investments and discuss how the 

growing usage of Internet-of-Thing-based infrastructures drives long-term co-evolution. 

The framework contains a state-space model to describe the pond-conduit network, a linear 

quadratic Gaussian controller to control ponds’ outflows in real-time, and a bad data 

detector to prevent bad/false data from entering the control system. 

Finally, Chapter 6 concludes this dissertation with each chapter’s major findings 

and points out future works that may further advance the understanding of co-evolution in 

complex adaptive water systems. 
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Chapter 2: An Investigation of Coupled Natural Human 

Systems Using a Two-Way Coupled Agent-Based Modeling 

Framework 

 

Abstract 

Improving the understanding of coupled natural human systems (CNHS) can better inform 

environmental policymaking. We investigated the co-evolution (i.e., bidirectional 

interactions) issues in CNHS via two-way coupling RiverWare (RW; a river-reservoir 

routing model) with agent-based models (ABMs, human decision models) in the Yakima 

River Basin in Washington, US. Results show that coupled models can better capture the 

historical irrigation diversion (human) and streamflow (nature) dynamics. We further 

demonstrated the effect of social norms (i.e., the influence of neighbors) among farmers 

and tested a “water reallocation” scenario to evaluate the influence of water policies on 

irrigation diversion behaviors. Detailed model structure and parameter uncertainty analysis 

are suggested to further quantify the benefit of CNHS models in multi-level water resources 

governance. 

2.1  Introduction 

Most of the major basins involve some degree of human activity in this anthropogenic era, 

indicating the significance of investigating the co-evolution (i.e., bidirectional interactions) 

between natural and human systems, so-called the coupled natural human systems (CNHS; 

An, 2012; Giuliani et al., 2016; Hyun et al., 2019; Liu et al., 2007; Yang et al., 2020) or 

socio-environmental systems (SES; Elsawah et al., 2020). While the social-hydrology 
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communities (Sivapalan and Blöschl, 2015) actively study the co-evolution mechanism 

emphasizing human influences on the water cycle, we focus more on the water resources 

management problem from a CNHS point of view, where the hydrological response is one 

of the indicators for making decisions (Brown et al., 2015; Reuss, 2003). 

An additional human complexity layer has been claimed can improve 

environmental planning and policy (Zellner, 2008). To that, the co-evolution mechanism 

is the foundation to generate more holistic information for policymaking, especially for 

revealing the offsetting behavior (Campbell et al., 2004; Fielding et al., 2012), where the 

feedback of human behaviors toward the changing policy jeopardizes the original intention 

or the effectiveness of that newly introduced policy, and multi-level governance 

application (Cash et al., 2006; Di Gregorio et al., 2019), which tend to address co-

management issues across power-imbalanced governance levels (or human actors). This 

chapter aims to tackle the abovementioned management issues by improving the 

understanding of the co-evolution mechanism in CNHS modeling. More specifically, we 

would like to explore the influence of policy rules (e.g., water reallocation; Du et al., 2021; 

Hillman et al., 2012; Yang et al., 2012) on human behaviors (e.g., irrigation diversions and 

risk attitudes) and discuss how CNHS model can potentially benefit multi-level water 

resources governance. 

To model the co-evolution mechanism in CNHS, a human layer is required in 

addition to the natural systems (e.g., hydrological model). For constructing the human 

system, agent-based modeling (ABM) is often used for its capability of describing 

emergent and heterogeneous human behaviors. The flexibility of the ABM framework 

allows various designs of decision-making processes, including factors such as people's 
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past experiences, future expectations, risk attitudes, availability of resources, and 

interaction with the environment and neighbors (Hu et al., 2006; Niles and Mueller, 2016). 

However, the social norm effect, defined as the informal rules that govern behavior in 

groups and societies (Bicchieri and Muldoon, 2014), are often missing in CNHS models 

with only a few exceptions (Abebe et al., 2020; Nhim et al., 2019). Groeneveld et al. (2017) 

pointed out social influences are one of the least considered factors among 134 agent-based 

land-use change models' literature. Kremmydas et al. (2018) also indicated that over 70% 

of concerned agents' interactions in the review of ABM for agricultural policy evaluation 

studies referred to a land market that the agents' interactions are a shared database for 

sending/getting bidding information instead of agent-to-agent interactions. The theoretical 

foundation of the social norm effect is still actively developing (Gelfand et al., 2017), and 

many studies have shown the social norm effect is an essential factor influencing human 

behavior (Ajzen, 1991; Bicchieri and Muldoon, 2014; Cedeno-Mieles et al., 2020; Chen et 

al., 2012; Epstein, 2012). For example, studies of groundwater management (Castilla-Rho 

et al., 2017), adoption of field practice innovation (Baba et al., 2021), and weather forecast 

utilization (Hu et al., 2006) have shown farmers' behaviors can be significantly affected by 

neighbors' opinions. These motivate us to explore how the social norm effect influences 

the CNHS modeling results. 

Consequently, this chapter aims to improve our understanding of the co-evolution 

mechanism in CNHS through a case study. We adopt the Yakima River Basin (YRB) in 

Washington, US, as our study area, where the RiverWare model (a river system model), 

YAKRW, developed by the U.S. Bureau of Reclamation (USBR), is available (Malek et 

al., 2018; USBR, 2011) to us. For the human model, we develop two diversion ABMs to 
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represent farmers’ heterogeneous irrigation diversion behaviors with and without the social 

norm effect. The objectives of this chapter are (1) coupling YAKRW (natural model) and 

diversion ABMs (human model), (2) comparing coupled models with the original YAKRW 

(baseline) to explore streamflow and irrigation diversion dynamics in CNHS, (3) 

investigating the social norm effect with a local sensitivity analysis (LSA) on a directed 

social network (i.e., information flow among human actors), and (4) demonstrating the 

impact of changing policy rules (e.g., water reallocation) on human behaviors (e.g., 

diversion and calibrated ABM parameters). 

The chapter is structured as follows. We introduce the technical background of 

RiverWare, ABM, and the coupling technique in Section 2.2 . Then, Section 2.3  describes 

the case study information for the YRB. After that, we show the detailed coupled model 

design and experimental setup in Section 2.4 . The results are presented in Section 2.5 . 

Next, we discuss the multi-level governance application and model limitations in Section 

2.6 , which is followed by the conclusions in Section 2.7 . 

2.2  Background 

2.2.1  RiverWare 

RiverWare (RW) is a licensed water resource engineering model developed in 1986 by the 

University of Colorado, Boulder. It is a process-based model that simulates river and 

reservoir routing (e.g., reservoir operational scheduling) and other natural processes (e.g., 

return flow) in a basin with policy rules, such as water rights and canal capacity, to fit the 

legal and physical constraints. The graphical interface enables modelers to build the model 

using a node-link structure. Each node is defined as an object (e.g., storage reservoir or 

water diversion district) with a unique set of attributes. It contains various slots to store 
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data (e.g., series slots for storing time-series data). Each link connects different objects to 

facilitate information flow. We refer to Zagona et al. (2001) and their official website: 

http://www.riverware.org/for more technical details of the RW model. RiverWare has been 

used internationally to evaluate real-world water allocation issues and assist reservoir 

operation (Abudu et al., 2018; Basheer et al., 2020; Biddle, 2001; Everitt, 2020; USBR, 

2011, USBR, 2012; U.S. DOE, 2019; Wheeler et al., 2020; Witt et al., 2017). Its popularity 

in academia and public sectors is one reason that RiverWare is adopted as our coupling 

target despite its being a licensed standalone software. In addition, we would like to 

leverage existing RW models’ credibility for our case study area (i.e., YAKRW). 

2.2.2  Agent-based modeling 

Agent-based modeling (ABM) is a bottom-up modeling approach known for its capability 

of describing the emergent and heterogeneous agents' behaviors, where an agent is a 

decision-making unit of actors. Each agent is controlled by a set of rules and attributes, and 

they can interact with other agents in a shared physical environment. Moreover, the 

adaptive learning mechanism of agents, defined as the adaptive capacity herein, enables 

agents’ decision rules to co-evolve with a changing environment (Axelrod and Tesfatsion, 

2006; Epstein, 2012; Miller and Page, 2007). Many fields have successfully adopted the 

ABM framework to explore CNHS, such as land-use change (Brown et al., 2004; 

Groeneveld et al., 2017; Zellner and Reeves, 2010), groundwater management (Al-Amin 

et al., 2018; Castilla-Rho et al., 2015; Reeves and Zellner, 2010), and water resources 

allocation (Li et al., 2017; Tesfatsion et al., 2017; Yang et al., 2009; Zhou et al., 2015). 
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2.2.3  Model coupling 

Studies have adopted a two-way coupling technique, a technique to create feedback loops 

among models, to organize information flow (e.g., real-time information exchange) and 

illustrate potential system responses between natural models and ABM (Giuliani et al., 

2016; Hyun et al., 2019; Jaxa-Rozen et al., 2019; Khan et al., 2017; Reeves and Zellner, 

2010). With a more extensive scope, modeling frameworks have been developed to 

alleviate potential technical barriers (Robinson et al., 2018). For example, some studies 

emulated nature models (e.g., groundwater model or land-use decision model) into well-

developed ABM platforms (e.g., NetLogo) (Castilla-Rho et al., 2015; Sun and Müller, 

2013), some established a new modularized ABM framework integrating vegetation 

models (Murray-Rust et al., 2014; Schreinemachers and Berger, 2011), and some 

developed a two-way coupling Python package to fully utilized an external simulation 

model with NetLogo (Jaxa-Rozen and Kwakkel, 2018). More broadly speaking, several 

communities (e.g., CSDMS, CoMSES Net, AIMES, etc.) have initiated generic 

coupling/integrating frameworks and model development standards to advance open 

science and system-of-systems research. Some examples include OpenMI (Gregersen et 

al., 2007; Moore and Tindall, 2005), Basic Model Interface (BMI; Hutton et al., 2020; 

Peckham et al., 2013), Earth System Modeling Framework (ESMF; Hill et al., 2004), and 

Object Modeling System (OMS; David et al., 2013). 

We attempt to follow the same coupling philosophy. However, the abovementioned 

frameworks might not be applicable in this chapter due to the licensed (closed source) 

RiverWare software that has limited modifiability. Therefore, we developed a Python 

package of RiverWare and Agent-based Modeling Interface for Developers (Py-RAMID) 
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to achieve two-way coupling between RiverWare and ABMs for our numerical 

experiments. The technical details for the Py-RAMID coupling framework are provided in 

the supplementary materials (Appendix A.1). Py-RAMID and its user manual are available 

at https://github.com/philip928lin/Py-RAMID. 

2.3  Case study - the Yakima River Basin 

The Yakima River Basin (YRB, Figure 2-1) is located in central Washington, US, where 

agriculture significantly contributes to the economy (USBR, 2010). According to the 2017 

agriculture census from the USDA, the main crops are orchards (127,934 acres, 29.6%), 

small grains (67,434 acres, 15.6%), and corns (63,163 acres, 14.6%). The basin-wide 

annual precipitation is approximately 680 mm, and most precipitation accumulates in the 

mountain area as snow (Mastin and Vaccaro, 2002). Therefore, the irrigation water supply 

for downstream croplands relies heavily on five major reservoirs, Keechelus, Kachess, Cle 

Elum, Bumping, and Rimrock (Figure 2-1). These reservoirs capture melting snow in the 

spring and redistribute water across the growing season (April to October; USBR, 2002). 

The six major irrigation districts in the YRB are Kittitas, Yakima-Tieton (Tieton), Wapato, 

Sunnyside Valley (Sunnyside), Roza, and Kennewick. They have different compositions 

of water rights (e.g., junior and senior water rights). Allocated by the priority order (first 

in time, first in right) (USBR, 2002), proratable (receive a reduced or prorated portion of 

their entitlements during droughts period) and nonproratable (receive full entitlements 

during droughts period) water rights are given to junior and senior water right holders, 

separated by the date of May 10, 1905 (USBR, 2002), respectively. The six districts’ water 

rights, average water diversion, district area, and corresponding canal gauges are 

summarized in Table 2-1. 

https://github.com/philip928lin/Py-RAMID
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Figure 2-1. Yakima River Basin. The map shows five major reservoirs, six major irrigation 

districts with corresponding canal flow gauges, and streamflow gauges used as model 

calibration targets. 

 

Building on previous local studies (Givens et al., 2018; Malek et al., 2018; Qiu et 

al., 2019), we further explored the YRB from a CNHS's viewpoint by two-way coupling 

diversion ABMs with the existing Yakima RiverWare model (YAKRW; Malek et al., 2018; 

USBR, 2011). 
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Table 2-1. Canal gauges, water rights, average water diversion, and district area of six 

irrigation districts. 

District Gauge 

Water rights (acre-feet)a Avg. diversion 

in 2001–2010 

(cfs)b 

District 

area (acre) Non-

proratablec 

Prorata

blec Total 

Wapato RSCW 305613 350000 655613 705.22 190862 

Sunnyside SNCW 289646 157776 447422 549.03 111067 

Roza ROZW 0 393000 393000 371.56 94876 

Kittitas KTCW 0 336000 336000 411.67 143383 

Tieton TIEW 75865 30425 106290 103.46 42150 

Kennewick KNCW 18000 84674 102674 128.00 54386 
a (USBR, 2012); b Hydromet; c Proratable water right holders will receive a reduced or 

prorated entitlement during the droughts period, while nonproratable water right holders 

will receive full entitlements all the time. 

 

2.4  Model and experimental setup 

2.4.1  Models and simulation schema 

To start the numerical experiments exploring CNHS in the YRB, we first constructed the 

coupled model, Coupled-YAKRW, by coupling YAKRW and a diversion ABM. Then, we 

applied Coupled-YAKRW to simulate the dynamics of historical river discharge and 

irrigation diversions in the six major water use districts. Each irrigation district was defined 

as a decision-making agent to make annual diversion requests. The general simulation 

schema is shown in Figure 2-2. 

First, we used observed irrigation diversions as agent diversion requests and sent 

them to the RW model in the initial year (𝑦𝑡𝑜). Then, the RW model outputs the simulated 

diversion and river discharge. Next, the simulated river discharge was sent to the ABM 

model (grey boxes in Figure 2-2) to update agents’ decision rules. Then, ABM used the 

new observations (e.g., precipitation or reservoir storage) to evaluate the water supply 

conditions of the coming year ( 𝑦𝑡 ) and calculate diversion-request-adjustment 

ratios (𝑅𝑔,𝑦𝑡) through the updated decision rules (yellow boxes in Figure 2-2; formulation 
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details are shown in Section 2.4.1.2). Finally, the diversion-request-adjustment ratios were 

applied to update the annual mean diversion request values, which were calculated by the 

annual diversion request records from 𝑦𝑡𝑜 to 𝑦𝑡−1 for each agent and then disaggregated 

into daily irrigation diversion requests for 𝑦𝑡 simulation. 

 

 

Figure 2-2. Coupled-YAKRW simulation schema. Yellow boxes are agent decision-

making processes (dotted thin arrows), which output the ratio (𝑅𝑔,𝑦𝑖) that is used to adjust 

the mean annual diversion request (circle number 6) and to simulate the next year by RW. 

Annual mean diversion request is computed using all historical annual diversion request 

records before the current year. Solid arrows connecting diversion requests (green boxes) 

and the RW model (blues boxes) show information flow in the coupling process. 

 

2.4.1.1 The baseline model – YAKRW 

We use the original YAKRW (Malek et al., 2018; USBR, 2011) as our baseline model. All 

the input data, such as initial reservoir storages, historical reservoir inflows, water rights 

information, etc., are embedded inside YAKRW. YAKRW runs on a daily scale, and we 

can output time-series data (e.g., daily streamflow and diversions) of any given RW objects 

(i.e., water users or reservoirs). The diversion requests of six irrigation districts are 

calculated using both water entitlement and fixed values computed by historical diversion 

measurements. YAKRW will first compute conventional diversion requests by combining 

dry-year (the 50th percentile diversion from historical dry years in 1991–2010) and wet-
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year (the 50th percentile diversion from historical wet years in 1991–2010) historical 

diversion sequences for a 365-day period based on the flow conditions at Parker gauge on 

a daily basis. Then, YAKRW picks the minimum of conventional diversion requests and 

prorated entitlement calculated according to their water rights (Table 2-1) to determine the 

final diversion requests. 

We substitute conventional diversion requests with our diversion ABM outputs for 

coupling purposes. Namely, the diversion decisions made by the ABM are still constrained 

by water rights. Note that there is an additional policy rule further updates the diversion 

requests for the Kennewick agent. To that, Kennewick's diversion requests can be 

dominated by this highly customized policy rule. We refer readers to USBR (2011) for 

more details about the baseline model's settings. 

2.4.1.2 Diversion ABM 

For the ABM model (yellow boxes in Figure 2-2), we adopted the Theory of Planned 

Behavior (TPB, Ajzen, 1991) as a guideline. TPB states that the behavior of an actor (e.g., 

agent) is built upon its intention (e.g., diversion requests), the social norm it experienced, 

and reality constraints (e.g., water rights, canal capacity). In this case study, every district 

acquires the attributes of two state variables and eight parameters, which must be calibrated 

(Table 2-2). The decision-making process includes six steps, shown as numbered circles in 

Figure 2-2. In step 1, agents will evaluate water supply conditions based on the Empirical 

Cumulative Distribution Function (ECDF) value of the observation of the coming year (𝑦𝑡) 

on the selected 𝐼𝑛𝑓𝑜𝑆𝑜𝑢𝑟𝑐𝑒 (Table 2-2, Equation A-1). The ECDF is constructed from the 

historical records of selected 𝐼𝑛𝑓𝑜𝑆𝑜𝑢𝑟𝑐𝑒 from 𝑦𝑡0 to 𝑦𝑡−1. In step 2, agents adjust their 
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perceived beliefs of water supply based on neighbor opinions, so-called the social norm 

effect (Figure 2-3) quantified by Equation 2-1, 

 𝑝𝑔,𝑦𝑡
𝑎𝑑𝑗

= (1 − 𝑆𝑤𝑔,𝑔) × 𝑃𝑔,𝑦𝑡 + 𝑆𝑤𝑔,𝑔∑ 𝑆𝑔,𝑖 × 𝑃𝑖,𝑦𝑡
𝑁𝑎𝑔𝑒𝑛𝑡𝑠
𝑖=1,𝑖≠𝑔

 (2-1) 

where 𝑝𝑔,𝑦𝑡
𝑎𝑑𝑗

 is the adjusted perceived belief on the water supply conditions considering the 

social norm effect, 𝑃𝑔,𝑦𝑡 is the original perceived belief of the agent at year 𝑦𝑡, and 𝑁𝑎𝑔𝑒𝑛𝑡𝑠 

denotes the total number of agents. The social network matrix (𝑆 , Figure 2-3a) that 

represents agents' interaction networks, and the weight vector (𝑆𝑤 , Figure 2-3b) that 

balances neighbor opinions and the agent's evaluation are used to describe the impact of 

neighbor opinions on their decision, which we label the social norm effect in this chapter. 

In the social network matrix, each row of the matrix is a social network connection of an 

agent. “0” means the agent in that row is not affected by the opinion of the agent in that 

column. “1” indicates an influence from the opinion of the agent in that column. Also, the 

social network is directed. For example, agent 2 is affected by agent 1, but agent 1 is not 

affected by agent 2, as shown in Figure 2-3a. Lastly, 𝑃 is a vector collecting all agents' 

perceived beliefs on water supply conditions (Figure 2-3c). Note that all perceived beliefs 

mentioned in this chapter are represented as probabilities, where values closer to 1 indicate 

an agent is more likely to have a positive belief in water supply conditions. The subscript 

𝑔 is the index of an agent. 

In step 3, agents will update their decision rules by updating a state variable, Center 

(𝐶𝑔,𝑦𝑡), which will minimize the average difference between the simulated and observed 

river discharges (𝑣𝑔,𝑦𝑡) at their downstream area. We adopted a generalized form of the 

Bush-Mosteller model (Brenner, 2006), a type of reinforcement learning model, to achieve 
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Table 2-2. Agent attributes that affect their decision-making processes. 

Attribute Name Type Description 

𝑁  Record’s 

length 

State The length of the agent’s memory record, 

where we set it to be the length from the 

initial year (𝑦𝑡0) to 𝑦𝑡−1 in this chapter.  

𝐶  Center State 𝐶  is a state variable distinguishing the 

positive and negative perceived beliefs on the 

water supply conditions that result in 

increasing or decreasing irrigation diversion 

requests, respectively. It is updated annually 

using the RL algorithm (Equation 2-2). 

𝐼𝑛𝑓𝑜𝑆𝑜𝑢𝑟𝑐𝑒a Information 

source 

Parameter Information that a particular agent uses to 

evaluate the coming year’s water supply 

conditions. Sources include the deviation of 

(1) winter (Oct-Mar) precipitation in each of 

five reservoir catchments, (2) storage in each 

of five reservoirs in March, (3) total winter 

precipitation (Oct-Mar), and (4) total 

reservoir storage in March. The deviation is 

the difference between the current value of 

the selected 𝐼𝑛𝑓𝑜𝑆𝑜𝑢𝑟𝑐𝑒  and its historical 

average. 

𝛾a Learning 

rate 

Parameter γ  is the learning rate for reinforcement 

learning (RL) algorithm (Equation 2-2) to 

update the state variable, 𝐶 , based on the 

average difference between the simulated 

and observed river discharges. 

𝑆𝑐a Scale Parameter 𝑆𝑐  is a scale factor to scale the average 

difference between the simulated and 

observed river discharges. It is used to adjust 

the agent’s sensitivity to this difference. 

(Equation 2-3). 

αa Alpha Parameter α is a prospect function parameter to adjust 

for positive beliefs about water supply 

conditions. 

βa Beta Parameter β is a prospect function parameter to adjust 

for negative beliefs about water supply 

conditions. 

𝑅𝑚𝑎𝑥
a  maximum 

diversion-

request-

adjustment 

ratio 

Parameter 𝑅𝑚𝑎𝑥  is the maximum diversion-request-

adjustment ratio. 

𝑆* social 

network 

matrix 

Parameter 𝑆 is the social network matrix (Figure 2-3a), 

which defines the directed social network 
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among agents. Each row of the matrix is the 

social network of the agent in that row. 

𝑆𝑤* weight 

vector 

Parameter 𝑆𝑤  is a weight vector for the social norm 

effect (Figure 2-3b), showing the proportion 

of each agent’s belief to the neighbors’ 

opinions. 
a denotes parameters involved in the calibration. 

 

 

Figure 2-3. (a)  is a social network matrix. Each row of the matrix is the social network of 

the agent in that row, which is affected by the agent in the column with cell's value 1. (b) 

𝑆𝑤 is a weight vector to balance between neighbor opinions and the agent's own beliefs. 

(c) 𝑃𝑦𝑡  is a collection of agent's evaluations of water supply conditions in 𝑦𝑡. 

 

the agent's adaptive learning behavior shown in the following equations: 

 𝐶𝑔,𝑦𝑡 = {
𝐶𝑔,𝑦𝑡−1 + ℎ𝑔,𝑦𝑡 × 𝛾𝑔 × (1 − 𝐶𝑔,𝑦𝑡−1)    𝑖𝑓 ℎ𝑔,𝑦𝑡 ≥ 0

𝐶𝑔,𝑦𝑡−1 + ℎ𝑔,𝑦𝑡 × 𝛾𝑔 × 𝐶𝑔,𝑦𝑡−1                 𝑖𝑓 ℎ𝑔,𝑦𝑡 < 0
 (2-2) 

where the strength (ℎ𝑔,𝑦𝑡) defining the updating magnitude of 𝐶 is calculated by Equation 

2-3. In Equation 2-3, 𝑣𝑔,𝑦𝑡 is equal to the observed river discharges minus the simulated 

discharges. 𝑣𝑔,𝑦𝑡 is scaled by a scale factor (𝑆𝑐𝑔) and then transformed into a value between 

0 and 1 through a sigmoid function (Equation 2-4). A “0.5” downshift defines the strength 

as positive or negative. The range of the strength becomes –0.5 to 0.5. 

 ℎ𝑔,𝑦𝑡 = {
𝜎 (

𝑣𝑔,𝑦𝑡

𝑆𝑐𝑔
) − 0.5                𝑖𝑓 𝑣𝑔,𝑦𝑡 ≥ 0

1 − 𝜎 (−
𝑣𝑔,𝑦𝑡

𝑆𝑐𝑔
) − 0.5    𝑖𝑓 𝑣𝑔,𝑦𝑡 < 0

 (2-3) 

 𝜎(𝑥) =
1

1+𝑒−𝑥
 (2-4) 
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The logic of Equation 2-2 and Equation 2-3 is that if we have a positive strength (positive 

𝑣𝑔,𝑦𝑡), which implies the observed river discharge is greater than the simulated discharge; 

then the agent will divert less water achieved by increasing 𝐶𝑔,𝑦𝑡. The state variable 𝐶𝑔,𝑦𝑡 

is used in step 4 and step 5 to distinguish the positive and negative perceived beliefs about 

water supply conditions, resulting in increasing or decreasing irrigation diversion requests, 

respectively. Therefore, higher 𝐶𝑔,𝑦𝑡 indicates a greater chance the agent will divert less 

water. This enhancement in 𝐶𝑔,𝑦𝑡  will result in attenuating the positive 𝑣𝑔,𝑦𝑡  mentioned 

above. In step 4, we address the agent’s personal bias according to their risk attitude 

through a prospect function (Kahneman et al., 2013) with a small modification. The 

modified prospect function includes two nonlinear convex or concave curves split by 𝐶𝑔,𝑦𝑡. 

These curves represent the agent’s risk attitude toward positive belief (more available water) 

and negative belief (less available water). For a positive belief (larger than 𝐶𝑔,𝑦𝑡 ), the 

convex function indicates the agent is risk-seeking, while the concave function indicates a 

risk-averse attitude. On the contrary, the convex function indicates risk-seeking, and the 

concave function means risk-averse for the agent’s attitude toward negative beliefs. The 

agent’s perceived belief (𝑃𝑔,𝑦𝑡
𝑏𝑖𝑎𝑠) is then updated by Equation 2-5, 

 𝑃𝑔,𝑦𝑡
𝑏𝑖𝑎𝑠 =

{
 

 (
𝑝−𝐶𝑔,𝑦𝑡

1−𝐶𝑔,𝑦𝑡
)
𝛼𝑔

× (1 − 𝐶𝑔,𝑦𝑡) + 𝐶𝑔,𝑦𝑡    𝑖𝑓  𝑝 ∈ 𝑃𝑔,𝑦𝑡
𝑎𝑑𝑗
, 𝑝 ≥ 𝐶𝑔,𝑦𝑡

(
𝑝−𝐶𝑔,𝑦𝑡

𝐶𝑔,𝑦𝑡
)
𝛽𝑔

× 𝐶𝑔,𝑦𝑡 + 𝐶𝑔,𝑦𝑡                𝑖𝑓  𝑝 ∈ 𝑃𝑔,𝑦𝑡
𝑎𝑑𝑗
, 𝑝 < 𝐶𝑔,𝑦𝑡

 (2-5) 

where 𝛼𝑔 and 𝛽𝑔 are the curvatures of nonlinear curves for the positive and negative beliefs, 

respectively, and 𝑃𝑔,𝑦𝑡
𝑎𝑑𝑗

 is a vector of values of a discretized beta probability distribution 

computed from 𝑝𝑔,𝑦𝑡
𝑎𝑑𝑗

 and 𝑁 (Table 2-2, Equation A-6). In step 5, the diversion-request-
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adjustment ratios are generated by mapping perceived beliefs (𝑃𝑔,𝑦𝑡
𝑏𝑖𝑎𝑠 ) into diversion-

request-adjustment ratios (𝑅𝑔,𝑦𝑡) through a linear mapping function (Equation 2-6).  

 𝑅𝑔,𝑦𝑡 = ((ECDF𝑃𝑔,𝑦𝑡
𝑏𝑖𝑎𝑠
−1 (𝑢𝑔,𝑦𝑡) × 2 − 1) − (𝐶𝑔,𝑦𝑡 − 0.5) × 2) × 𝑅𝑔,𝑚𝑎𝑥 (2-6) 

where 𝑢𝑔 is a random number from a Uniform(0,1) distribution.  

In this chapter, the 𝑅𝑔,𝑦𝑡 is represented by the expected value (𝑅𝑔
𝐸𝑥𝑝

) for enhancing 

the calibration converging speed. 

 𝑅𝑔,𝑦𝑡
𝐸𝑥𝑝

= 𝐸𝑢[𝑅𝑔,𝑦𝑡] (2-7) 

In addition, to prevent the numerical error, the 𝑅𝑔,𝑦𝑡
𝐸𝑥𝑝

 is forced to be greater than -0.9. If it 

is below -0.9, the algorithm will replace it with -0.9. Finally, we complete the decision-

making process by using the ratios to update mean annual diversion requests and 

disaggregate them into daily diversion requests (step 6, Equation A-10). The ODD+D 

description (Müller et al., 2013) for the ABM model (Appendix A.2) and a complete 

mathematical description of the decision-making algorithm (Appendix A.3) are provided 

in Appendix A. 

2.4.2  Models’ calibration and validation 

To calibrate the model, we separated a single simulation into three periods: (1) warm-up 

period (1960–1965), (2) calibration period (1966–1995), and (3) validation period (1996–

2005). The objective function for the calibration is to maximize the mean annual Nash-

Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970) of six diversions (i.e., Kittitas, Tieton, 

Wapato, Sunnyside, Roza, and Kennewick) and two river discharges (i.e., Parker and 

Kiona) as the RW is updated by the diversion ABM with an annual frequency (Section 

2.4.1 ). 
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Coupled-YAKRW contains 72 parameters that require calibration, including six 

parameters (Table 2-2) for each district, a social network matrix, and a weight vector. To 

reduce the searching space, we first calibrate Coupled-YAKRW without a social network 

matrix (Coupled-YAKRW w/o S.); namely, 36 parameters from the social network matrix 

and the weight vector are removed. Then, we calibrate Coupled-YAKRW with a fixed 

𝐼𝑛𝑓𝑜𝑆𝑜𝑢𝑟𝑐𝑒 parameter from the calibrated Coupled-YAKRW w/o S. model for each agent. 

2.4.3  Experimental setup 

We design the following numerical experiments to compare coupled models with the 

YAKRW (baseline), investigate the social norm effect, and assess the impact of changing 

policy rules on human irrigation behaviors. 

2.4.3.1 Model comparison for testing different ABM structures 

We first calibrate and validate two coupled models (Coupled-YAKRW and Coupled-

YAKRW w/o S.). Then, we compare them with the baseline model (YAKRW) to examine 

whether coupled models can better capture both the hydrological responses (system 

viewpoint) and irrigation diversion dynamics (the local viewpoint). 

2.4.3.2 LSA on a directed social network 

The social norm effect is argued to be a significant factor affecting farmer decisions in the 

western U.S. (Hu et al., 2006). Therefore, in addition to the model comparison in Section 

2.4.3.1, we further explored the sensitivity of social network structure to local or system-

wide model performance (i.e., NSE) using local sensitivity analysis (LSA) on the directed 

social network. In the experiment, we slightly perturbed connections inside the network of 

the calibrated network of Coupled-YAKRW. This means we randomly selected one or two 

agent pairs and reversed their calibrated network connections. For example, if the pair of 
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agents had no connection (e.g., cells in the social network matrix (Figure 2-3a) with value 

0), then we added a connection (changed 0 to 1) or vice versa. For a single perturbation, 

we had 30 combinations in social networks. For two perturbations, we had 435 

combinations. Consequently, we ran a total of 465 simulations in the LSA. 

2.4.3.3 Water-reallocation-induced behavior changes 

The third experiment is performed as a proof-of-concept to demonstrate how the two-way 

coupled model can be applied to inform potential human behavior changes through a 

“what-if” water reallocation scenario. We would like to show how agents' risk attitudes 

will change if their water rights are all proratable, meaning they share the water deficiency 

during the drought years. To clarify, we are not proposing the implementation of such top-

down water rights changes. Instead, we want to use the scenario to test the hypothesis that 

agents originally with nonproratable water rights will be more sensitive to environmental 

changes (i.e., toward risk-averse) as there is no guaranteed water supply during drought 

years. In reality, water rights change is an extremely complicated issue involving political 

debate, government negotiation, and multiple-level stakeholder engagements, which is out 

of this chapter’s scope and beyond the limit of our current ABM structure. Therefore, we 

can only show the results of “what will happen” if water can be reallocated in the YRB, 

but we will not explore “how it might happen” in this chapter. To test the abovementioned 

changing behavior hypothesis, we recalibrated the coupled model with the all-proratable 

water rights setup and compared the recalibrated agents’ parameters with the original one. 
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2.5  Results 

2.5.1  Model comparison and adaptive capacity 

We show how coupled models can better capture both long-term (overall trends) and short-

term (year-to-year variations) hydrological and irrigation diversion dynamics in this 

section. We also discuss the impacts of the social norm effect, namely, the impact of the 

ABM model structure as well. In this case study, the NSEs resulting from the annual 

diversion of six major irrigation districts are considered as local level model performances. 

In contrast, the NSEs from the annual discharge of the Parker and Kiona flow gauges near 

the basin outlet represent system-wide performances. 

Table 2-3 shows both Coupled-YAKRW and Coupled-YAKRW w/o S. can better 

capture local and system-wide dynamics of the observed data compared to the baseline 

model (YAKRW) in terms of NSE values. For system mean NSEs, the two coupled models 

and the baseline model are similar. However, the coupled models show significantly better 

local NSEs (Table 2-3). Kennewick's performances are dominated by RW's policy rule 

(Section 2.4.1.1), as we can also see in Figure 2-4. Figure 2-4 reveals the annual diversion 

time series data for six agents. The grey lines are the observed data. The validation results 

(after the vertical dashed lines in Figure 2-4) indicate the calibrated models are not 

overfitted. Similar results are provided for Parker and Kiona flow gauges in Figure A4. 

These results suggest that coupled models better catch diversion dynamics induced by 

human activities through adaptive decision-making. 
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Table 2-3. NSE values of YAKRW, Coupled-YAKRW, and Coupled-YAKRW w/o S. 

models. 

Models 

Local NSEs System NSEs 

Roza 

Sunny

side Tieton 

Kenne

wick Kittitas Wapato 

Kiona Parker 

YAKRW -0.08 -5.87 -1.66 -0.69 -2.78 -0.12 0.97 0.91 

Coupled 

YAKRW 
0.60 0.34 -0.42 -0.68 0.55 -0.16 0.95 0.98 

Coupled-

YAKRW 

w/o S. 

0.56 -0.60 0.54 -0.73 0.81 0.13 0.96 0.99 

 

 

Figure 2-4. Model comparison of annual diversions. Grey lines are the observed annual 

irrigation diversions. Green dashed lines are outputs of the original YAKRW model. Blue 

and red dotted lines are simulated results from coupled-YAKRW and coupled-YAKRW 

w/o S., respectively. 

 

We quantify how adaptive capacity benefits by capturing long-term trends in 

irrigation diversions with the state variable 𝐶 in Figure 2-5. State variable 𝐶 contributes to 

steps 3, 4, and 5 of the agent's decision-making process as a parameter in decision rules 

(Figure 2-2). As mentioned in Section 2.4.1.2, 𝐶 distinguishes the positive and negative 

perceived beliefs about water supply conditions, leading to increasing (above 𝐶 ) or 



30 

 

decreasing (below 𝐶) irrigation diversion requests, respectively. Therefore, although a bit 

counterintuitive, if we observe 𝐶  value is continuously higher than 0.5, then we can 

anticipate a long-term decreasing diversion trend and vice versa. For the Roza, Wapato, 

and Tieton districts in Figure 2-5, the 𝐶 value fluctuates at approximately 0.5 before 1980 

and remains greater than 0.5 after 1980. This corresponds to an observed decreasing 

diversion trend after 1980 (Figure 2-4). Following the YRB's history, there was only one 

major drought between 1960 and 1980, which provided fewer incentives to alter diversion 

behaviors. However, the YRB experienced about one drought every five years after 1980 

(Malek et al., 2018; Pellicciotto et al., 2012), which may have influenced the competition 

dynamics of water. This affected the overall cooperative or defective structure in the basin, 

which motivates some districts to initiate water conservation measures (e.g., changing crop 

types and improving irrigation efficiency). These long-term changes in diversion behavior 

can be combined and implicitly captured by state variable 𝐶. For Sunnyside and Kittitas, 

𝐶 values remained approximately 0.5 during the entire simulation period, suggesting no 

noticeable long-term trend in diversions. These results also corresponded to the 

observations in Figure 2-4. For the Kennewick agent, due to dominant policy rules inside 

the YAKRW model (Section 2.4.1.1), our ABM model showed a minor influence on 

Kennewick's behavior. Therefore, neither the simulated diversion value nor the 𝐶 value 

captured the observed dynamic. 
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Figure 2-5. Timeseries plot of the state variable, Center (𝐶), for six agents in the Coupled-

YAKRW model. Colored regions have negative perceived beliefs about water supply 

conditions. Note: higher 𝐶 values indicate agents will divert less water. 

 

2.5.2  LSA of social network structure 

The social norm effect is suggested as a significant factor in farmer decision-making 

processes in the western U.S. (Hu et al., 2006). However, in this case study, both Coupled-

YAKRW and Coupled-YAKRW w/o S. models provided a similar level of mean NSE, 

where Coupled-YAKRW w/o S. generated a slightly higher mean NSE (Table 2-3). One 

explanation is model equifinality, where the over-parameterized model obtains a set of 

parameters (Figure A6) or structures that result in similar model performance. In Table 2-4, 

we show how calibrated agent-unique parameters (i.e., agent attributes) were changed from 

Coupled-YAKRW to Coupled-YAKRW w/o S to compensate for the absence of the social 

norm effect (𝑆 and 𝑆𝑤). Although judging the correctness of different model settings is not 

the target of this chapter, a further investigation can advance our understanding of the role 

of the social norm effect and help us evaluate model equifinality issues in the coupled 

models for future CNHS studies. 
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Table 2-4. Percentage of difference between Coupled-YAKRW and Coupled-YAKRW 

w/o S. regarding each parameter’s calibrated range. Raw parameter values of Coupled-

YAKRW and Coupled-YAKRW w/o S. are given in Table A1 and Table A2, respectively. 

Parameter Roza Sunnyside Tieton Kennewick Kittitas Wapato 

𝛾 -17% -96% 21% -7% -63% 18% 

𝑆𝑐 31% 30% 20% -12% 34% 4% 

α -29% -24% -64% 29% -80% 45% 

β -15% -54% 23% 21% -81% 14% 

𝑅𝑚𝑎𝑥 -48% -74% 28% -7% -17% -31% 

 

To further examine the impact of the social network structure on model 

performance, local sensitivity analysis (LSA) was performed by perturbing the calibrated 

social network matrix (Table A3) as described in Section 2.4.1.2. The LSA results (Figure 

2-6) show that the mean diversion NSE over six agents was similar to the calibrated 

Coupled-YAKRW model (red cross). However, perturbation of the social network could 

affect the local performance of individual agents (e.g., Tieton, Kittitas, and Sunnyside). 

Our original hypothesis is that agents with larger weights for the social norm effect will be 

more sensitive to social network perturbations. However, the Tieton district, with a lower 

weight value (0.09), showed a more significant variation in NSE values compared to other 

agents with higher weights (e.g., Roza and Wapato). This was due to predefined policy 

rules inside the YAKRW model, described in the next paragraph. For the Kittitas district, 

the perturbation results had higher NSE values in the irrigation diversion outputs. This 

phenomenon was caused by the system-wide calibration objective function, in which local 

parameters might not be optimized for each agent. For the Sunnyside district, the variance 

among LSA simulations was small (i.e., insensitive), but there was a noticeable decrease 

in NSE values. One possible reason is that Sunnyside has the highest calibrated learning 

rate (𝛾; Table A1) and maximum diversion-request-adjustment ratio (𝑅𝑚𝑎𝑥; Table A1), 

meaning its decisions may be greatly influenced by the environment feedback (e.g., 
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streamflow, 𝑣 ). Therefore, other agents' behaviors may implicitly affect Sunnyside's 

diversion decisions through changing the streamflow (e.g., upstream diversions) during the 

social network perturbation. 

 

 

Figure 2-6. NSE of irrigation diversions in LSA. The weight of the social norm effect of 

each agent is shown by brackets. The red cross indicates calibrated Coupled-YAKRW 

model results, and the orange lines are median values. Black circles are NSE values outside 

the range of 25% and 75% quantiles shown as boxes. 

 

Agents such as Roza, Sunnyside, Kennewick, and Wapato were not sensitive to the 

social network structure. However, those insensitive results do not imply that the social 

norm effect is not essential, where the predefined policy rules in the YAKRW might cause 

such results. Policy rules, including water rights or maximum/minimum diversion 

constraints (Section 2.4.1.1), could limit the utility of ABM outputs. Therefore, the social 

norm effect might seem limited using RW outputs. To illustrate this complexity, we plotted 

the standard deviation of 465 simulations with respect to calibrated Couple-YAKRW 

results in Figure 2-7, where blue circles represent actual diversion (RW output) and orange 
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triangles indicate the diversion requests sent from ABM to RW (RW input). In general, 

larger 𝑆𝑤  values have greater standard deviations since the agent relies more on the 

neighbor's opinions. However, those trends are limited by RW policy rules (Section 

2.4.1.1), where the standard deviations of RW outputs are less than RW inputs. This 

phenomenon becomes clear at larger 𝑆𝑤. Such a limitation is acceptable because individual 

human behaviors are indeed restricted by policy rules (e.g., water rights) in the real world. 

 

 

Figure 2-7. Standard deviations of 465 LSA simulation results with respect to calibrated 

Coupled-YAKRW outputs. The x-axis is the weight inside the social norm effect. Blue 

circles represent actual diversion (RW output), and orange triangles indicate diversion 

requests sent from ABM to RW (RW input). 

 

2.5.3  Impact of policy rules on the human behavior 

Studies have shown evidence in offsetting behaviors (Campbell et al., 2004; Fielding et al., 

2012), where the feedback of human behaviors toward the changing policy jeopardizes the 

original intention or the effectiveness of that newly introduced policy. For example, 

Fielding et al. (2012) indicated that the policy of giving people water-saving hardware 

might result in higher water consumption, which was opposite to the goal of their water 
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conservation programs. This offsetting behavior motivates us to explore the impact of 

changing policy rules (e.g., water reallocation) on human behavior (e.g., diversions and 

risk attitudes). 

In the comparison of Coupled-YAKRW w/o S. between original and all-proratable 

water rights, we found that Wapato, Sunnyside, and Tieton divert much less water during 

the drought years since their original non-proratable water rights are set to all-proratable 

water rights. Then, when those senior water rights holders divert less water, more water 

becomes available to junior holders. This is more obvious in normal and wet years. 

Therefore, we observed larger diversion fluctuations in those agents (Figure A5). We 

ignore Kennewick in the latter analysis due to dominant policy rules in the YAKRW 

(Section 2.4.1.1), leading to minor influence from the diversion ABM. 

To further investigate the potential changes in human behaviors, we recalibrated the 

Coupled-YAKRW w/o S. (with fixed 𝐼𝑛𝑓𝑜𝑆𝑜𝑢𝑟𝑐𝑒) under the all-proratable water rights 

setup. The results indicate that agents become more sensitive to the changing environment 

(i.e., toward risk-averse), as shown in Figure 2-8. Figure 2-8 presents the prospect functions 

(Equation 2-5) of agents' perceived beliefs on the water supply conditions. The curvatures 

(𝛼 and 𝛽 in Equation 2-5) are agents' risk attitudes. For example, concave shapes in the 

upright corner in each subplot of Figure 2-8 mean that agents are risk-seeking and 

insensitive to the belief of the positive water supply conditions (e.g., more available water), 

while convex shapes represent risk-averse attitudes and sensitive characteristics to the 

belief of the positive water supply conditions. On the contrary, the concave and convex 

shapes have opposite meanings for the lower-left corner in the subplots (Figure 2-8), which 

indicates the agents’ risk attitudes to the belief of the negative water supply conditions (e.g., 
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droughts). The prospect functions of the recalibrated Coupled-YAKRW w/o S. are shown 

in dotted lines, where the solid lines are from the original model. Comparing solid and 

dotted lines, we can see that most of the lines curve toward risk-averse regions (blue area) 

in Figure 2-8 except parts of Tieton and Wapato. Namely, agents become more willing to 

adjust their diversion behaviors according to the changing environment. This flexibility 

could potentially benefit the instream flow control (e.g., adjusting their diversions to meet 

target flow) and enhance the efficiency in water uses, where efficiency is defined as 

maximizing productivity without wasting. It has been shown that the value associated with 

instream flow (e.g., recreational and esthetic uses) are greater than the value made from 

irrigation of low-value crops (Watts et al., 2001). However, the unstable irrigation supply 

could also impact the investment in high-value perennial crops such as orchards and grapes 

(Feinerman and Tsur, 2014), which requires several preparation years before making 

profits. 

 

 

Figure 2-8. Prospect functions (e.g., mapping agents' risk attitudes; Equation 2-5) under 

original (solid lines) and all-proratable (dotted lines) water right scenarios. The upper right 

corners are the risk attitudes toward the beliefs of positive water supply conditions, while 

the lower left corners are of negative conditions (e.g., droughts). 
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2.6  Discussion 

2.6.1  Cross-scale CNHS modeling for multi-level governance application 

This chapter investigates the co-evolution mechanism in CNHS modeling via a case study 

in the YRB. The results show that the coupled models can better capture both system (e.g., 

streamflow) and local (e.g., irrigation diversions) dynamics. Also, we demonstrate the 

influences of the social norm effects and the impact of the changing water allocation policy. 

We would like to further discuss how to link the coupled models proposed in this chapter 

to potential multi-level water resources governance applications. 

Multi-level water resources governance naturally occurs in many managements 

problem in solving water conflicts. For example, the Yakima River Basin Integrated Water 

Management Plan (Office of Columbia River, 2020) began in the 1980s, involving federal 

(e.g., USBR), Washington state, Yakama Nation, counties, cities, and farmers to 

collaboratively offer a long-term vision and a management plan for water allocation under 

the changing climate and environment. To that, the coupled model provides a 

quantification method to model the cross-scale responses supported by individually 

customized actors' behaviors and interactions (e.g., federal policy to the reservoir 

operations, water allocation policy to the farmers’ behaviors, and ecological conditions to 

the drought responses) under a decentralized modeling framework (e.g., ABM). Such 

properties of coupled models create a unique niche for informing multi-level water 

resources governance via modeling results. Furthermore, according to an entire Columbia 

River Basin (CRB)-wide survey results (Zhang et al., 2021), reservoir operations in the 

CRB gradually shifted to improve the aquatic environment (USBR, 2020) and people were 

most supportive of sustainability policies impacting the food and water sectors instead of 
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energy sectors. The YRB situations and our modeling results align with the survey findings. 

This implies that the model structure of Coupled-YAKRW (e.g., reservoir operation rules 

in the RW and the diversion ABM) has the potential to be scaled up and applied to the 

entire CRB. 

More importantly, we would like to discuss the motivation of how water agencies 

might consider adopting coupled models, which could help them resolve possible water 

conflicts under different policy scenarios (with explicit human decisions quantified). Here 

are some historical events for water conflicts associated with water resources multi-level 

governance in the CRB region. In 2006, a water rights fight between a power company and 

the Idaho State government occurred at the Snake River, US, where ongoing water rights 

dispute with the Nez Perce Indians has been last for decades (Miller, 2006). In 2016, the 

armed fights over the water rights and land resources in the Malheur National Wildlife 

Refuge, Oregon, US, between the federal government and the local people led to several 

casualties (Wiles, 2016). We vision that coupled models can analyze and broaden policies 

and management strategies, which provide a higher chance of finding a smoother path to 

ease those water conflicts. However, such a hypothesis cannot be solely proved by our 

current modeling experiments. It requires vigorous involvement of social science to 

establish the theoretical foundation for model setup and continuous communication among 

stakeholders. 

2.6.2  Limitations 

To explore water management challenges in CNHS, we tested different ABM models for 

different human behavior assumptions and built the coupled model on top of existing 

process-based models (e.g., YAKRW in our case study), which were developed by USBR. 
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These existing models are used by authorities to assist in real-world operations. Therefore, 

policy constraints are included in the modeling structure to reflect reality as much as 

possible. These inclusions are most likely present due to legal issues around water rights 

and minimum stream flow constraints, as examples. Therefore, our case study might not 

fully demonstrate the utility of the ABM. As shown in the Result section, we encountered 

limited flexibility in the YAKRW model. Nonetheless, these results do not mean we should 

not couple with these existing models; we would like to leverage their credibility and use 

the coupled model to demonstrate potential policy changes via modeling results. 

Also, the current ABM model design limits our capability to further explore the 

water reallocation experiment. As a result, we only demonstrate “what will happen” but 

not “how it will happen.” In reality, a possible way to facilitate the discussion of water 

reallocation is through water banking or water market mechanisms (Du et al., 2021; Yang 

et al., 2012). For example, with economic incentives, Du et al. (2021) and Yang et al. (2012) 

showed the possible transition of a nonproratable water right holder might become a 

proratable water right holder in a water market. Note that the water market setting will 

drive farmers' behaviors in a different way, as we presented in this chapter and require a 

different ABM model design (i.e., a decentralized optimization algorithm to drive agent's 

behavior is needed in the water market setup). Nevertheless, this topic will be a perfect 

future study applying the two-way coupled model. 

Another limitation is the model equifinality issues (e.g., multiple models result in 

similar calibrated outcomes) along with the potentially over-parameterized coupled models. 

Namely, due to the unknown of the true process, modelers will encounter trade-offs 

between narrative complexity (e.g., how detail is the human behavior modeling design?) 
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and model complexity (Grimm and Railsback, 2012a), which leads to greater equifinality 

(Figure A6). We further refer readers to Beven (2006), Khatami et al. (2019), and Lin and 

Yang (2022) for a more comprehensive introduction to equifinality issues. To address this 

limitation, we plan to conduct uncertainty and sensitivity analysis (Yen et al., 2014) and 

add these features in the next version of Py-RAMID to help modelers identify dominant 

policy rules in the RW and model equifinal parameter sets of coupled models. Also, instead 

of a single mean NSE value, we can calibrate the coupled models with pattern-oriented 

modeling (Grimm and Railsback, 2012b; Wiegand et al., 2003), which focuses more on 

the adaptive capacity of the system. For example, the adaptation of an agent's behaviors 

(e.g., crop types and crop area) as responses to the changing environment or extreme events 

(e.g., droughts). 

Finally, even though we put effort of developing a python-based Py-RAMID package 

for embracing the Open Science by Design concept (NASEM, 2018; U.S. DOE, 2019) 

through improving coupled models’ reproducibility (Goodman et al., 2016) and 

extensibility (Lacroix and Critchlow, 2003), we understand Py-RAMID has its limitation 

to fully meet the idea due to the licensed RiverWare. Moreover, similar coupling concepts 

like co-simulation, multi-modeling, multi-formalism modeling, and multi-model ecologies 

have also been explored in energy and system control domains (Bollinger et al., 2018; 

Gomes et al., 2018; Plessis et al., 2014; Vangheluwe, 2000; Vaubourg et al., 2015), as well 

as the integration frameworks like High-Level Architecture (HLA; Dahmann et al., 1997) 

in the technology context. Therefore, we do not claim that Py-RAMID is a novel 

contribution to the Open Science by Design concept. Instead, we hope the study in this 
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chapter can help our readers to be aware of this concept and further contribute to it in the 

future. 

2.7  Conclusions 

This chapter aims to improve our understanding of CNHS, which has been shown to 

ameliorate environmental planning and policy (Zellner, 2008), through the YRB case study. 

We designed three numerical experiments investigating different facets of CNHS. First, 

we compare coupled models (e.g., Coupled-YAKRW and Coupled-YAKRW w/o S.) with 

the baseline model (e.g., YAKRW) and demonstrate that coupled models can better capture 

both irrigation diversion (human behaviors) and streamflow dynamic. Second, we analyzed 

the role of the social norm effect through a local sensitivity analysis. The similar simulation 

results between coupled models with or without social norm effect are caused by the 

dominant RW policy rules and the potential model equifinality issue. Separate research on 

quantifying the model complexity and equifinality is required before further demonstrating 

the effect of the social norm in CNHS modeling. Third, we show human behaviors (e.g., 

diversions and risk attitudes) could be affected by policy rules, where agents become more 

sensitive (i.e., risk-averse) to the changing environment under the all-proratable-water-

rights scenario in the YRB. In sum, this chapter explores the co-evolution in CNHS from 

different facets, such as model structures (e.g., social norm effect) and the reciprocate 

influence between policy rules (e.g., water allocation) and human behaviors (e.g., 

diversions and risk attitudes). However, a more detailed model uncertainty analysis is 

needed to further quantify the benefit of CNHS in informing policymaking for future multi-

level water resources governance applications. 
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Chapter 3: HydroCNHS: A Python Package of Hydrological 

Model for Coupled Natural–Human Systems 

 

Abstract 

Modeling Coupled Natural–Human Systems (CNHS) to inform comprehensive water 

resources management policies or describe hydrological cycles in the Anthropocene has 

become popular in recent years. To fulfill this need, we developed a semi-distributed 

Hydrological model for Coupled Natural–Human Systems, HydroCNHS. The 

HydroCNHS is an open-source Python package supporting four Application Programming 

Interfaces (APIs) that enable users to integrate their human decision models, which can be 

programmed with the agent-based modeling concept, into the HydroCNHS. Specifically, 

we design Dam API, RiverDiv API, Conveying API, and InSitu API to integrate, 

respectively, customized man-made infrastructures such as reservoirs, off-stream 

diversions, trans-basin aqueducts, and drainage systems that abstract human behaviors (e.g., 

operator and farmers’ water use decisions). Each of the HydroCNHS APIs has a unique 

plug-in structure that respects within-subbasin and inter-subbasin (i.e., river) routing logic 

for maintaining the water balance. In addition, the HydroCNHS uses a single model 

configuration file to organize input features for the hydrological model and case-specific 

human systems models. Also, HydroCNHS enables model calibration using parallel 

computing power. We demonstrate the functionalities of the HydroCNHS package through 

a case study in the Northwest United States. Given the integrity of the modeling framework, 
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HydroCNHS can benefit water resources planning and management in various aspects, 

including uncertainty analysis in CNHS modeling and more complex agent design. 

3.1  Introduction 

Recently, many studies have explored the coevolution of natural and human water systems 

with coupled natural–human systems (CNHS) modeling approach, e.g., Faust et al. (2017) 

and Wada et al. (2017), for a comprehensive evaluation of water resources management 

policies (Yang et al., 2020) and near-surface water cycles (Sivapalan et al., 2015). The 

coupled modeling approach often consists of a process-based hydrological model and a 

human infrastructure model. Agent-based modeling (ABM) is commonly adopted to 

describe heterogeneous human behaviors and their impacts on water systems that 

significantly vary at various spatial and temporal scales, e.g., Hu et al. (2019), Lin et al. 

(2022), and Lin and Yang (2022). Each agent represents a decision-making unit defined by 

a set of attributes and behavior rules. In general, man-made infrastructures such as 

reservoirs, diversions, trans-basin aqueducts, and drainage systems can be represented as 

an agent and coupled with hydrological models with desired bidirectional information 

exchange frequency. 

However, developing a sophisticated human model is not always possible for 

CNHS modeling/modelers due to the lack of data or other limitations. For example, when 

modeling reservoir releases, modelers can use historical records (e.g., daily time series) as 

exogenous inputs or use a decision-making model to endogenously and dynamically 

simulate water releases. While some existing hydrological model software, e.g., Neitsch et 

al. (2011) and Liang et al. (1996), can incorporate human decision units, the option that 

allows users to choose among exogenous or endogenous human components is often not 
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supported. Knox et al. (2018) developed a generic network-based multi-agent framework 

to link natural models and human models, which is one of the earlier efforts to address this 

gap. Following Knox et al. (2018) and trying to specifically target the water system, this 

technical note aims to develop a semi-distributed Hydrological model for Coupled Natural–

Human Systems (hereafter HydroCNHS) that facilitates integrating hydrologic models 

with agent-based human system models through a generalizable coupling procedure with 

four Application Programming Interfaces (APIs). The four APIs are Dam API, RiverDiv 

API, Conveying API, and InSitu API, which have distinct plug-in structures that respect 

within-subbasin and inter-subbasin (i.e., river) routing logic for maintaining the water 

balance. They can integrate human models, where heterogeneous human agents can be 

modeled with different decision-making process complexity and data intensity (e.g., 

exogenous input data or endogenous rules) from a bottom-up viewpoint. Essentially, the 

HydroCNHS is a Python package simulating natural and human-induced water cycles 

within a or multiple watershed system(s) on a daily scale. The package features a single 

model configuration file to organize input settings for hydrological models and case-

specific human models. In addition, the HydroCNHS supports a parallel calibration module 

using a genetic algorithm (GA; Whitley, 1994). The package is published with GPL-3.0 

License to follow the concept of Open Science (NASEM, 2021). We demonstrate the 

functionalities of the HydroCNHS in a case study with the Tualatin River Basin (TRB) in 

the Northwest United States. 
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3.2  Methods 

3.2.1  Structure of the HydroCNHS Model 

The HydroCNHS Python package is a semi-distributed hydrological model for CNHS that 

simulates natural and human-induced water cycles on a daily scale. The subbasin 

delineation is based on the agent design and user-desired distributing resolution. Figure 3-1 

shows the HydroCNHS model structure (blue box) and user inputs (yellow box). Three 

inputs are required: (1) daily climate data (precipitation and temperature), (2) a model 

configuration file (.yaml; setting for the HydroCNHS and ABM modules), and (3) ABM 

modules (.py; green box). HydroCNHS APIs handle the logic to integrate ABM modules. 

In the “Initialization” step (Figure 3-1), the HydroCNHS form the routing scheme based 

on the stream orders associated with outlets (i.e., routing order of outlets). Then, agent 

instances/objects are created according to user-defined agent classes in ABM modules (.py). 

A “class” is a data structure in object-oriented Python defined by “attributes” and 

“methods.” Once initialized, each agent is an instance of an assigned agent class. For 

example, two reservoir agents can be created by a single reservoir agent class. After that, 

the HydroCNHS simulates the initial subbasin runoffs independently using a rainfall-

runoff module, for which we provide two options: (1) the General Water Loading Function 

(GWLF; Haith et al., 1987) with nine parameters and (2) the ABCD model (Thomas, 1981) 

with five parameters. Next, we use the Lohmann routing model (Lohmann et al., 1998) to 

trace the runoff from subbasins through the river channel (i.e., inter-subbasin routing) and 

the unit hydrograph parameterization described in Wi et al. (2015) to account for the 

within-subbasin routing process. A detailed description of the GWLF, ABCD, and 

Lohmann routing models is provided in the next section. The runoff from each subbasin is 
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sent to the “Coupling Simulation” step (Figure 3-1), and its contribution to the basin outlet 

is determined by the three factors: (1) the simulation period, (2) the routing scheme for 

routing outlets, and (3) agents linked to outlets. Forming a routing scheme with four APIs 

in the HydroCNHS will be further explained in the following sections.  

 

Figure 3-1. Structure of the HydroCNHS model structure (blue box) and three user inputs 

(yellow box), including climate data (temperature and precipitation), model configuration 

file (.yaml), and ABM modules (.py; green box). User-provided ABM modules will be 

integrated into the HydroCNHS through four APIs. 

 

The GA “Calibration module,” powered by the Distributed Evolutionary 

Algorithms in Python (DEAP) Python package (Fortin et al., 2012; De Rainville et al., 

2012), facilitates calibrating the entire CNHS model in a parallel computing mode. We 

refer our readers to the HydroCNHS user manual for more details and coding examples 

(https://hydrocnhs.readthedocs.io).  

https://hydrocnhs.readthedocs.io/
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3.2.2  Module components 

3.2.2.1 Snow module 

HydroCNHS is embedded with a simple snow module (Haith, 1985) to separate rainfall 

(𝑅𝑡 [cm]) from the precipitation (𝑃𝑡 [cm]) and updated rainfall by the snowmelt, as shown 

below. 

 𝑆𝑛𝑡 = {
𝑆𝑛𝑡−1 −min(𝑆𝑛𝑡−1, 𝐷𝑓 ∗ 𝑇𝑡−1),         𝑇𝑡−1 > 0
𝑆𝑛𝑡−1 + 𝑃𝑡−1,                                            𝑇𝑡−1 ≤ 0

 (3-1) 

  𝑅𝑡 = {
𝑃𝑡 +min(𝑆𝑛𝑡 , 𝐷𝑓 ∗ 𝑇𝑡),     𝑇𝑡 > 0
0,                                              𝑇𝑡 ≤ 0

 (3-2) 

where 𝑆𝑛𝑡  [cm] is the accumulated snow at time 𝑡 . 𝐷𝑓  [cm/℃] is the degree-day 

coefficient for snowmelt. This module will be used in GWLF and ABCD models.  

3.2.2.2 Modified General Water Loading Function (GWLF) module 

The hydrologic module of the GWLF (Haith et al., 1987) is a lumped rainfall-runoff model, 

which simulates the daily outlet runoff (𝐹𝑡 [m
3/sec]) by  

 𝐹𝑡  = (𝑆𝐹𝑡  +  𝐺𝑡  +  𝐵𝐹𝑡) ×
𝐴

864
 (3-3) 

where 𝑆𝐹𝑡 [cm] is surface quick flow, 𝐺𝑡 [cm] is subsurface flow, and 𝐵𝐹𝑡 [cm] is newly 

introduced baseflow component (Luo et al., 2012) to depict low flow patterns in the 

modified version. Subscript 𝑡 denotes the value at time step t. This will continuously apply 

to the rest of the content. 𝐴 [ha] is the catchment area. 

The surface quick flow is calculated by the SCS-curve-number method.  

 𝑆𝐹𝑡 = {
(𝑅𝑡 − (𝐼𝑆 × 𝐷𝑆𝑡))

2
(𝑅𝑡 + ((1 − 𝐼𝑆) × 𝐷𝑆𝑡))⁄ ,        𝑅𝑡 > 𝐼𝑆 × 𝐷𝑆𝑡

0,                                                                                                   𝑂𝑡𝑒𝑟𝑤𝑖𝑠𝑒
 (3-4) 

where 𝐼𝑆 is an interception coefficient. 𝐷𝑆𝑡 [cm] is the potential maximum detention after 

runoff begin, which can be estimated by  
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 𝐷𝑆𝑡 = 2540 𝐶𝑁𝑡⁄ − 25.4 (3-5) 

where 𝐶𝑁𝑡 is computed at time 𝑡 by 

𝐶𝑁𝑡 = {

𝐶𝑁1 + ((𝐶𝑁 − 𝐶𝑁1) 𝐴𝑀1⁄ ) × 𝐴𝑀𝑡 ,                                                    𝐴𝑀𝑡 < 𝐴𝑀1
𝐶𝑁 + ((𝐶𝑁3 − 𝐶𝑁) (𝐴𝑀2 − 𝐴𝑀1)⁄ ) × (𝐴𝑀𝑡 − 𝐴𝑀1),   𝐴𝑀1 ≤ 𝐴𝑀𝑡 ≤ 𝐴𝑀2
𝐶𝑁3,                                                                                                            𝐴𝑀2 < 𝐴𝑀𝑡

  (3-6) 

 𝐶𝑁1 = (4.2 × 𝐶𝑁) (10 − 0.058 × 𝐶𝑁)⁄  (3-7) 

 𝐶𝑁3 = (23 × 𝐶𝑁) (10 + 0.13 × 𝐶𝑁)⁄  (3-8) 

where 𝐶𝑁 is a curve number parameter. 𝐴𝑀𝑡  [cm] is the five-day antecedent moisture. 

𝐴𝑀1 and 𝐴𝑀2 are equal to 3.6 and 5.3 [cm], respectively, if the monthly mean temperature 

is higher the 10 degrees Celsius (growing season). Otherwise, 𝐴𝑀1 and 𝐴𝑀2 are equal to 

1.3 and 2.8 [cm], respectively. 

 The subsurface flow is calculated by  

 𝐺𝑡 = 𝑅𝐶 × 𝑆𝑡 (3-9) 

where 𝑅𝐶 is a recession coefficient and 𝑆𝑡 [cm] is shallow saturated zone soil moistures. 

𝑆𝑡 is updated every time step by 

 𝑆𝑡+1 = 𝑆𝑡 + 𝑃𝐶𝑡 − 𝐺𝑡 − 𝐷𝑡 (3-10) 

where 𝑃𝐶𝑡 [cm] and 𝐷𝑡 [cm] are percolation from the unsaturated zone (𝑈𝑡 [cm]) and deep 

seepage out of 𝑆𝑡, respectively. These two values are calculated by 

 𝑃𝐶𝑡 =  𝑚𝑎𝑥((𝑈𝑡 + 𝑅𝑡 − 𝑆𝐹𝑡 − 𝐸𝑡 − 𝑈𝑟), 0) (3-11) 

 𝐷𝑡 = 𝑆𝑒𝑝 × 𝑆𝑡 (3-12) 

where 𝑈𝑟 [cm] is available soil water capacity at the root zone and 𝑆𝑒𝑝 is a deep seepage 

coefficient. The evapotranspiration (𝐸𝑡 [cm]) is calculated by  

 𝐸𝑡 = 𝑚𝑖𝑛((𝑈𝑡 + 𝑅𝑡 − 𝑆𝐹𝑡), 𝐾𝑠 × 𝐾𝑐 × 𝑃𝐸𝑡) (3-13) 
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where 𝐾𝑠 and Kc are water stress and land cover coefficients, respective. 𝑃𝐸𝑡 [cm] is the 

potential evapotranspiration given by users or calculated by the Horton method (Horton, 

1941). 𝐾𝑠 is computed by  

 𝐾𝑠 = {
1,                            𝑈𝑡 ≥ 𝑈𝑟 × 0.5

𝑈𝑡 (𝑈𝑟 × 0.5)⁄ ,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (3-14) 

 According to Luo et al. (2012), the baseflow is calculated by  

 𝐵𝐹𝑡 = 𝐵𝐹𝑡−1 × 𝑒
−𝛼 + 𝑅𝑒𝑡 × (1 − 𝑒

−𝛼) (3-15) 

 𝑅𝑒𝑡 = 𝐷𝑡 − 𝐷𝑠𝑡 (3-16) 

 𝐷𝑠𝑡 = 𝛽 × 𝐷𝑡 (3-17) 

where 𝛼 and 𝛽 are two baseflow coefficients. 𝑅𝑒𝑡 [cm] is recharge amount and 𝐷𝑠𝑡 [cm] 

is the deep seepage loss. 

3.2.2.3 ABCD module 

The ABCD model (Thomas, 1981; Martinez et al., 2010) is a simple hydrologic model 

comprised of two storage compartments, soil moisture zone (𝑋𝑈𝑡 [cm]) and groundwater 

zone (𝑋𝐿𝑡  [cm]). Four parameters, 𝑎, 𝑏, 𝑐, and 𝑑, are used to compute the daily outlet 

runoff (𝐹𝑡 [m
3/sec]) as shown in the following equations. 

 𝐹𝑡 = (𝑄𝐿𝑡 +  𝑄𝑈𝑡) ×
𝐴

864
 (3-18) 

Where 𝑄𝐿𝑡 [cm] and 𝑄𝑈𝑡 [cm] are groundwater discharge and runoff contributed by the 

soil moisture zone. 𝑄𝐿𝑡 is calculated by  

 𝑄𝐿𝑡 = 𝑑 × 𝑋𝐿𝑡 (3-19) 

where 𝑋𝐿𝑡 is updated by  

 𝑋𝐿𝑡 = (𝑋𝐿𝑡−1 + 𝑐 × 𝐴𝑊𝑡) (1 + 𝑑)⁄  (3-20) 

𝑄𝑈𝑡 is computed by 



50 

 

 𝑄𝑈𝑡 = (1 − 𝑐) ×𝑊𝐴𝑡 (3-21) 

where 𝑊𝐴𝑡 is the water available for runoff available water calculated by the (𝐴𝑊𝑡 [cm]) 

and evapotranspiration opportunity (𝐸𝑂𝑡) as shown below. 

 𝑊𝐴𝑡 = 𝐴𝑊𝑡 − 𝐸𝑂𝑡 (3-22) 

𝐴𝑊𝑡 and 𝐸𝑂𝑡 are calculated by Equations 3-23 and 3-24, respectively.  

 𝐴𝑊𝑡 = 𝑅𝑡 + 𝑋𝑈𝑡−1 (3-23) 

 𝐸𝑂𝑡  =
𝐴𝑊𝑡+𝑏

2×𝑎
−√(

𝐴𝑊𝑡+𝑏

2×𝑎
)
2

 −
𝐴𝑊𝑡+𝑏

𝑎
 (3-24) 

where 𝑋𝑈𝑡−1 [cm] will be updated by  

 𝑋𝑈𝑡 = 𝐸𝑂𝑡 − 𝐸𝑎𝑡 (3-25) 

where 𝐸𝑎𝑡 [cm] is the actual evapotranspiration estimated by 

 𝐸𝑎𝑡 =  min ( 𝑃𝐸𝑡 , 𝑚𝑎𝑥 (0 , 𝐸𝑂𝑡 × (1 − 𝑒
−𝑃𝐸𝑡 𝑏⁄ )) (3-26) 

3.2.2.4 Lohmann routing module 

The Lohmann routing module (Lohmann et al., 1998; Wi et al., 2015) consists of two parts, 

(1) within-subbasin routing and (2) inter-subbasin (i.e., river) routing. Each of them is 

represented by an impulse response function (IRF). Within-subbasin routing IRF is 

represented by a discrete Gamma distribution with shape (𝐺𝑆ℎ𝑎𝑝𝑒 ) and scale (𝐺𝑆𝑐𝑎𝑙𝑒 ) 

parameters. River routing IRF (or Green’s function) is linearized from the Saint-Venant 

equation (Equation 3-27) parameterized by diffusion wave celerity (𝑉𝑒𝑙𝑜  [m/s]) and 

diffusive coefficient (𝐷𝑖𝑓𝑓 [m2/s]) and solved with its convolution integral. 

 
𝜕𝑄

𝜕𝑡
= 𝐷𝑖𝑓𝑓 

𝜕2𝑄

𝜕𝑥2
− 𝑉𝑒𝑙𝑜 

𝜕𝑄

𝜕𝑥
 (3-27) 

After computing IRFs, a unit hydrograph describing water traveling time between 

a subbasin outlet and a downstream routing outlet can be formed by convoluting within-
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subbasin routing IRF and River routing IRF. Finally, the streamflow at the routing outlet 

is calculated by convoluting the unit hydrograph with its corresponding outlet’s runoff. 

3.2.3  Routing Scheme 

The routing scheme assigns an order to each routing outlet. The routing modules are 

executed in orders from upstream to downstream basins to ensure that the effects of 

upstream agent properties propagate further downstream explicitly. Note that the 

topographical network of outlets is pre-defined in the model configuration file by users. 

The routing outlets are where the streamflow information is required for calibration or 

agents’ decisions (e.g., reservoir release rules). The backtracking process automatically 

generates the routing scheme starting from the basin outlet (e.g., N1 in Figure 3-2). 

Moreover, the HydroCNHS supports multi-basin simulation (e.g., N1 and n1 in Figure 3-2) 

for transboundary analysis. The routing scheme in Figure 3-2 is expressed as [N4, N5, R2, 

R1, N3, N2, N1, n1]. This sequence will be adjusted accordingly if users add specific “node 

groups” in the model configuration file. For instance, if the release rule of reservoir R2 is 

influenced by the streamflow at N2, we need to acquire streamflow at the location before 

making a decision on the release from R2. This sequence can be refined by assigning a 

“node group” to N2 and R2 in the model configuration file. After that, the output routing 

scheme will be automatically updated in the HydroCNHS as [N4, R1, N5, N2, R2, N3, N1, 

n1].  

3.2.4  Coupling APIs 

APIs, herein, are the communication interface between HydroCNHS and user-defined 

ABM modules. The four APIs in the HydroCNHS (Figure 3-2) are (1) Dam API, (2) 

RiverDiv API, (3) Conveying API, and (4) InSitu API. Dam API is designed for 
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integrating in-stream agents like reservoirs (e.g., R1 and R2 in Figure 3-2) that could 

significantly alter the streamflow regime. Agents with Dam API will be considered as 

pseudo routing outlets (no routing is needed) involved in the routing scheme. Namely, 

streamflow is directly defined by agents’ water releases decision. RiverDiv API is created 

for agents that divert water from rivers and may have return flows to other outlets, e.g., 

diversion agent D1 diverts water from N3 and return water to N1 in Figure 3-2. This API 

ensures the diverted outlet is routed before agents’ diversions. At the outlet receiving return 

flow, the subbasin runoff and returned flow are combined and enter the within-subbasin 

routing process since return flows often have no explicit return locations. Conveying API 

is designed to transfer water to another outlet from a routing outlet where the routing 

process has already been executed. The transferred water has no within-subbasin routing 

(no within-subbasin delay like runoff). Therefore, they will be routed separately from the 

subbasin’s runoffs. If an agent wants to convey water from the downstream outlet to the 

upstream outlet (e.g., pump stations), the water will be delivered with delays (e.g., C2 

diverts water from N3 first and delivers it to S2 at a later time step). InSitu API is 

developed for agents that directly affect runoffs via “within subbasin activities” (e.g., I1 in 

Figure 3-2). For example, those runoff changes may come from land-use changes due to 

urbanization or exploiting groundwater through wells. Such adjustments will be made 

before any routing process at each time step.  
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Figure 3-2. A generic example of HydroCNHS coupling APIs and water system 

description. Note that agents R1, R2, D1, C1, C2, and I1, are programmed in ABM modules 

(.py) and integrated into HydroCNHS through APIs. 

 

We mathematically formalize the coupled model simulation with these four APIs 

at each time step. Equation 3-28 shows all runoff components within a subbasin before 

routing. 

𝐹𝑠
′ = 𝐹𝑠 + ∑ 𝐸𝑢𝑔

+
𝑔∈𝐴𝑔𝑡𝐼(𝑠) + ∑ 𝐸𝑢𝑔

−
𝑔∈𝐴𝑔𝑡𝐼(𝑠) + ∑ 𝑅𝑒𝑔

+
𝑔∈𝐴𝑔𝑡𝑅(𝑠) ,    for all 𝑠 ∈ {subbasins}

  (3-28) 

where 𝐹𝑠  and 𝐹𝑠
′  are the initial and updated runoff in subbasin 𝑠 , respectively. 𝐸𝑢 

represents runoff changes with symbols of plus (gain) and minus (loss) for InSitu agents 

𝐴𝑔𝑡𝐼(𝑠) activated at outlet 𝑠. 𝐴𝑔𝑡𝑅(𝑠) are RiverDiv agents activated at outlet 𝑠, and 𝑅𝑒 is 

the return flow.  

The node-to-node routing is simulated using Equations 3-29 and 3-30. Equation 3-

29 represents the streamflow replacement by in-stream agents like reservoirs. 

 𝑄𝑔 = 𝑓𝑟𝑒𝑙𝑒𝑎𝑠𝑒(𝑔),    for all 𝑔 ∈ {agents using Dam API} (3-29) 
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where 𝑄𝑔 is the streamflow expressed as a function 𝑓𝑟𝑒𝑙𝑒𝑎𝑠𝑒(∙), taking the Dam agent 𝑔 as 

inputs. Equation 3-30 computes all other routing processes and streamflow changes 

resulting from conveying flow and diversions. 

 𝑄𝑟 = ∑ 𝑓𝑟𝑜𝑢𝑡(𝐹𝑠
′)𝑠∈𝐹𝑢,

𝑢∈𝑈(𝑟)

+ 𝑓𝑟𝑜𝑢𝑡
𝐼 (𝐹𝑟′) + ∑ 𝑓𝑟𝑜𝑢𝑡

𝑅 (𝐹𝑎
′)𝑎∈𝐴(𝑟) + ∑ 𝑓𝑟𝑜𝑢𝑡

𝑅 (𝐶𝑔
+)𝑔∈𝐴𝑔𝑡𝐶(𝑟)  

+∑ 𝐶𝑔
−

𝑔∈𝐴𝑔𝑡𝐶(𝑟) + ∑ 𝐷𝑔
−,𝑔∈𝐴𝑔𝑡𝑅(𝑟)  for all 𝑟 ∈ {routing outlets}\{agents using Dam API} 

  (3-30) 

where 𝑄𝑟  is the routed streamflow at routing outlet 𝑟. 𝑓𝑟𝑜𝑢𝑡(∙) represents the Lohmann 

routing function. 𝑓𝑟𝑜𝑢𝑡
𝐼 (∙) and 𝑓𝑟𝑜𝑢𝑡

𝑅 (∙) are the routing functions considering only within-

subbasin routing and inter-subbasin (i.e., river) routing, respectively. 𝑈(𝑟)  are the 

upstream outlets contributing to the streamflow at 𝑟. 𝐴(𝑟) are the routing outlets with 

assigned streamflow time series for which within-subbasin routing is not required. 𝐴𝑔𝑡𝐶(𝑟) 

and 𝐴𝑔𝑡𝑅(𝑟) are the Conveying agents and RiverDiv agents activated at routing outlet 𝑟, 

respectively. 𝐶 is the conveying water, and 𝐷 is the diversion. The plus and minus signs 

indicate flow changes due to adjustments. Each agent has a priority input for the simulation 

order in case conflicts occur (e.g., diversions at an outlet by multiple agents). Also, 

HydroCNHS supports the institution feature in which multiple agents share a decision-

making instance/object allowing them to make decisions together. For example, R1 and 

D1 in Figure 3-2 coordinate on the release and diversion decisions. 

3.3  Case Study – Tualatin River Basin 

We select the TRB as a study area (Figure 3-3) to demonstrate the four APIs in the 

HydroCNHS. The TRB, located in northwest Oregon, United States, with a drainage area 

of 1844.07 km2, is covered by densely populated areas (20%), agricultural area (30%), and 

forests (50%) (Tualatin River Watershed Council, 2021). Its agriculture heavily relies on 
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the irrigation scheme accounting for high seasonal rainfall variability because rainfall in 

the area concentrates during the winter season (November–February). The Spring Hill 

Pumping Plant is the largest diversion facility in the TRB for supporting the Tualatin 

Valley Irrigation District (TVID; DivAgt), where the Hagg reservoir (ResAgt) is the 

primary water source. During the summer period, water is transferred from the Barney 

reservoir (outside of the TRB) through a trans-basin aqueduct (PipeAgt) to augment the 

low flow for ecosystem conservation. 

 

 

Figure 3-3. The Tualatin River Basin system. TRTR, HaggIn, DLLO, TRGC, DAIRY, 

RCTV, and WSLO are seven subbasins. PipeAgt, ResAgt, and DivAgt are trans-basin 

aqueduct, Hagg reservoir, and TVID agents, respectively. DrainAgt1 and DrainAgt2 are 

two drainage system agents for the runoff-changing scenario. 
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We model seven TRB subbasins (in HydroCNHS) and three agents (in an externally 

programmed TRB_ABM module). The seven outlets of subbasins are denoted as TRTR, 

HaggIn, DLLO, TRGC, DAIRY, RCTV, and WSLO (Figure 3-3). Three agents are PipeAgt, 

ResAgt, and DivAgt, integrated through Conveying, Dam, and RiverDiv APIs, 

respectively (Figure 3-3). PipeAgt (i.e., a water manager) assigns conveying water to 

TRTR with observed median monthly values (Bonn, 2020). ResAgt (i.e., a reservoir 

operator) determines reservoir releases with generic operational rules, where target 

storages and target releases are adopted for flood control (October–May) and storage 

control (June–September) periods. DivAgt (i.e., a group of farmers) diverts water from 

TRGC with monthly-diversion-request decisions at the beginning of each month and has 

return flow to WSLO. The diversion-request decisions from June to September are 

governed by linear functions, where the observed monthly precipitation is the predictor. 

Minor diversions in other months are filled with historical mean values. Details of this 

TRB_ABM module and agents’ decision rules are provided in Appendix B.1. 

We test the simulation from 1981 to 2013, where the climate data is obtained from 

Livneh et al. (2015). We aggregate the 1/16 degree climate grids for each subbasin and 

agent. The HydroCNHS GA module conducts the calibration (1981–2005) with Kling-

Gupta efficiency (KGE; Gupta et al., 2009) as a target performance metric. We compare 

two models, Mgwlf and Mabcd, in which the same ABM model is coupled with two rainfall-

runoff modules, GWLF and ABCD, respectively. We show the calibration parameters and 

their bounds in Table 3-1. Other detailed calibration settings, including calibration 

objective and data sources, are provided in Appendix B.2. In addition, we run a scenario 

with fixed diversion behavior of DivAgt using a monthly mean (i.e., a conventional method 
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to handle human decision exogenously) to compare with endogenous adaptive behavioral 

rules. Such differences in human behavior assumptions may lead to distinct modeling 

outcomes and impact the exploratory analysis of changing environments. To demonstrate 

the usage of InSitu API, we run runoff-changing scenarios with the calibrated Mgwlf model 

to test how the changes in upstream runoff affect the streamflow at the basin outlet. One 

possible cause of runoff changes is urbanization. Therefore, we model runoff changes by 

adding two agents, DrainAgt1 at DAIRY and DrainAgt2 at RCTV, and assume a linear 

growth of the urbanized area in DAIRY and RCTV subbasins from 5% to 50%, where such 

urbanization is assumed to increase unit runoff by 75% according to a local study (Gwenzi 

et al., 2014).  
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Table 3-1. Calibration parameter bounds for the hydrological model and the ABM model. 

Model Module Parameter name Unit Parameter Bound 

H
y
d
ro

lo
g
ic

al
 m

o
d
el

 

G
W

L
F

 

Curve number -- 𝐶𝑁2 [25, 100] 

Interception coefficient -- 𝐼𝑆 [0, 0.5] 

Recession coefficient -- 𝑅𝑒𝑠 [10-3, 0.5] 

Deep seepage coefficient -- 𝑆𝑒𝑝 [0, 0.5] 

Baseflow coefficient -- 𝛼 [0, 1] 

Percolation coefficient -- 𝛽 [0, 1] 

Available/soil water capacity cm 𝑈𝑟 [1, 15] 

Degree-day coefficient for 

snowmelt  

cm/°

C 
𝐷𝑓 [0, 1] 

Land cover coefficient -- 𝐾𝑐 [0.5, 1.5] 

A
B

C
D

 

Controls the amount of runoff and 

recharge during unsaturated soil 
-- 𝑎  [0, 1] 

Controls the saturation level of the 

soils 
-- 𝑏  [0, 400] 

Ratio of groundwater recharge to 

runoff 
-- 𝑐  [0, 1] 

Controls the groundwater 

discharge rate 
-- 𝑑  [0, 1] 

Degree-day coefficient for 

snowmelt 

cm/°

C 
𝐷𝑓  [0, 1] 

L
o
h
m

an
n
 r

o
u
ti

n
g

 Subbasin unit hydrograph shape 

parameter 
-- 𝐺𝑆ℎ𝑎𝑝𝑒 [1, 100] 

Subbasin unit hydrograph rate 

parameter 
-- 𝐺𝑆𝑐𝑎𝑙𝑒 [10-2, 150] 

Wave velocity in the linearized 

Saint–Venant equation 
m/s 𝑉𝑒𝑙𝑜 [0.5, 100] 

Diffusivity in the linearized 

Saint–Venant equation 
m2/s 𝐷𝑖𝑓𝑓 

[200, 

5000] 

A
B

M
  Return flow factor -- 𝐹𝑎𝑟𝑒 [0, 0.5] 

 The slope of a linear function 
m3/s/

cm 
𝑙𝑎 [0, 3] 

 Interception of a linear function m3/s 𝑙𝑏 [-2, 2] 

 

3.4  Results 

We compare KGEs between two calibrated models (Mgwlf and Mabcd) in Table 3-2 and 

Figure 3-4. The two values in parenthesis are KGEs for calibration (1981–2005) and 

validation (2006–2013) periods, respectively. Both models can capture streamflow 

dynamics and agent behaviors (i.e., reservoir releases and water diversions) on a monthly 
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scale. Mgwlf has better performance in general since the GWLF model uses a nine-

parameter for each subbasin compared to the five-parameter ABCD model. One advantage 

of endogenous behavioral rules is that they can capture the dynamic interactions between 

natural and human systems and more realistically present the variances of two systems 

under the changing environment. For example, Figure 3-5a shows the difference in the 

annual outputs’ variance between Mgwlf with the calibrated endogenous diversion 

behavioral rules (Mgwlf,endog) and Mgwlf with fixed diversion (Mgwlf,fixed). Mgwlf,endog has a 

larger variance in DivAgt’s diversion, reflecting DivAgt (farmers) can adjust its (their) 

water diversion according to the weather forecast. Such adaptive diversion behaviors 

counteract the streamflow downstream, leading to lower streamflow variance at WSLO 

(Figure 3-5a) compared to Mgwlf,fixed. Mgwlf,endog may benefit exploratory analysis where the 

environment gradually changes and static behavioral rules (e.g., Mgwlf,fixed) are no longer 

appropriate. To demonstrate the last API (i.e., InSitu API), Figure 3-5b exhibits the gradual 

annual streamflow increment (gaps between two lines) at WSLO resulting from the runoff 

changes at DAIRY and RCTV subbasins. 
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Figure 3-4. Four monthly time series plots for calibrated Mgwlf and Mabcd. DLLO and 

WSLO are the calibrated streamflow. Release and diversion are simulated by ResAgt and 

DivAgt, respectively. Grey vertical lines separate the calibration (1981-2005) and 

validation (2006-2013) periods. Black dotted lines are the observations. 

 

Table 3-2. KGE comparison for the calibration and validation results of two models 

Model ResAgt DLLO DivAgt WSLO 

Monthly observed data 
Reservoir 

releases 
Streamflow Diversion Streamflow 

Mgwlf     (0.783, 0.811) (0.916, 0.865) (0.917, 0.898) (0.958, 0.894) 

Mabcd (0.776, 0.893) (0.905, 0.889) (0.905, 0.885) (0.777, 0.836) 

Note: calibration 1981–2005, validation 2006–2013, on a monthly scale. 
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Figure 3-5. Two scenarios of the Mgwlf model. (a) Standard deviation difference between 

Mgwlf,endog and Mgwlf,fixed in annual mean values. (b) The annual WSLO streamflow for with 

(solid line)/without (dashed line) urbanization using calibrated. 

 

3.5  Conclusions 

This technical note presents a semi-distributed Hydrological model for Coupled Natural–

Human Systems, HydroCNHS, an open-source Python package. We demonstrate the 

functionalities of the HydroCNHS through a case study in the Tualatin River Basin, 

Northwest United States, where we couple a trans-basin aqueduct, a reservoir, an irrigation 

diversion, and two drainage system agents accounting for runoff changes with four 

coupling APIs linked to two different rainfall-runoff models, GWLF and ABCD. The KGE 

comparison results indicate that coupled models could capture monthly streamflow, 

irrigation diversion, and reservoir release patterns. We also show that the model with 

endogenous diversion behavioral rule better reflects the interaction between natural and 

human systems and may benefit exploratory analysis. Also, the results of the runoff-

changing scenario show the capability of HydroCNHS in modeling the effects of gradual 

environmental changes on streamflow. With the coding language integrity, flexibility in 
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designing agents, and parallel computing ability, the HydroCNHS can potentially benefit 

future studies in CNHS like uncertainty analysis or coupling with more diverse (e.g., 

hydropower plants and cooling plants) and complex (e.g., interactions among agents and 

hydrological environment) agent designs. 
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Chapter 4: The Effects of Model Complexity on Model Output 

Uncertainty in Co-Evolved Coupled Natural-Human Systems 

 

Abstract 

Studies have recently focused on using coupled natural-human systems (CNHS) to inform 

policymaking. However, model uncertainty can increase with model complexity and affect 

the variance of the model outcomes. Therefore, this chapter explores an uncertainty 

analysis of coupled hydrological and human decision models to better evaluate CNHS 

modeling properties. Five coupled models are proposed with different model complexities 

for human behavior settings (i.e., model structure and the number of calibrated parameters): 

one static, two adaptive, and two learning adaptive. Learning adaptive models (the most 

complex) have both a learning component (capturing long-term trends) and an adaptive 

component (capturing short-term variations), while adaptive models omit the learning 

component. The static model is the simplest, without learning or adaptive components. 

Applying the law of total variance, the model output uncertainty is decomposed into three 

sources: (a) climate change scenario uncertainty, (b) climate internal variability, and (c) 

different model configurations with parameter sets or model structures that are equally 

capable of producing similar outcomes. Our exploratory analysis demonstrated that model 

uncertainty would likely increase with model complexity given uncertain input data (e.g., 

climate forcing) and different model configurations; the inclusion of a learning mechanism 

in the human system can potentially offset the impact of the natural system on uncertainty 

through coupling natural and human systems. We also discuss other uncertainty sources, 



64 

 

such as assumptions about model structure due to incomplete knowledge and metrics for 

calibration target selection for future studies. 

4.1  Introduction 

In the anthropogenic era, most major basins experience human activity, requiring an 

understanding of interactions between human society and the natural environment, that is, 

co-evolution in coupled natural-human systems (CNHS; Bauch et al., 2016; Wada et al., 

2017). With the recognition of the socio-physical nature of emerging water challenges, 

many methods and modeling techniques, including system dynamics modeling, agent-

based modeling, Bayesian networks, and so on (Blair & Buytaert, 2016; Kelly et al., 2013), 

have been proposed to address complex water management issues, often in the style of the 

Harvard Water Program (Brown et al., 2015; Milly et al., 2008; Reuss, 2003). Among them, 

coupling an agent-based model (ABM) with a process-based model (e.g., hydrological 

model) is a promising method to investigate emerging phenomena and heterogeneous 

human behaviors in CNHS (Berglund, 2015; Giuliani et al., 2016; Yang et al., 2020). In 

this coupling framework, each agent (e.g., irrigation district or reservoir) serves as a 

decision-making unit with a set of rules and attributes governing its behavior (e.g., 

diversion request or release) and interacts with other agents in a shared physical 

environment (e.g., river basin). As a result, various ABMs have been developed with agents 

that have different complexities (e.g., model structure and number of calibrated parameters) 

to capture nonlinearity and non-stationarity in CNHS. For example, agent behaviors have 

been governed by a deterministic decentralized optimization model (Yang et al., 2009) or 

more sophisticated designs that consider adaptive (short-term) and learning (long-term) 
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behaviors with respect to other agent decisions and the changing environment (Giuliani et 

al., 2016; Hyun et al., 2019). 

Many case studies (Elshafei et al., 2014; Kandasamy et al., 2014; Marston & Konar, 

2017; Song & Zhang, 2015; Xu et al., 2014; Yang et al., 2020) have suggested that an 

additional human complexity layer in the model will improve environmental planning and 

policy (Zellner, 2008). Yang et al. (2020) showed that the potential tipping point of farmer 

behavioral changes could be identified by the bottom-up nature of the coupled model. Hung 

and Yang (2021) argued that the learning adaptive agent design of a coupled model could 

assist water managers in developing soft policies. As the complexity of a method and the 

number of parameters increase, the challenge of handling model uncertainty and variability 

increases (McLean & McAuley, 2012; Srikrishnan & Keller, 2021). This challenge is 

aggravated in CHNS modeling since there is often interest in both natural (e.g., streamflow) 

and human (e.g., water diversions) system outputs, and the co-evolved natural and human 

dynamics in the complex system heavily rely on structural assumptions of the model (e.g., 

how humans react to environmental changes; Karthe et al., 2021; Messina et al., 2008). 

These model parameters and structural uncertainties significantly affect confidence in the 

inference and interpretation of model results (Allen & Gunderson, 2011; Allison et al., 

2018; Kelly et al., 2013; Sun et al., 2016). 

In the modeling literature, uncertainty is often ascribed to input data, model 

resolution level, model structure, and parameters (Saltelli et al., 2019); in addition, problem 

framing, perceptions of uncertainty, inappropriate assumptions, and epistemic uncertainty 

are also deeply embedded in model uncertainty (Beven, 2016; Di Baldassarre et al., 2016; 

Moallemi et al., 2020; Westerberg et al., 2017). However, uncertainty studies of coupled 
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models in CNHS are still emerging (Elsawah et al., 2020). In this chapter, we focused on 

parameter and structural uncertainties, that is, different model configurations that can 

produce similar/acceptable model outcomes, in CNHS modeling. A more complex model 

may suffer more severe uncertainty issues from a potentially wide range of behavioral 

model configurations (Arendt et al., 2012; Srikrishnan & Keller, 2021). In the hydrology 

field, this is also known as equifinality (Beven, 1993), and many studies have demonstrated 

the impact of equifinality in their analysis (Arsenault & Brissette, 2014; Beven, 2006; 

Ekblad & Herman, 2021; Khatami et al., 2019; Williams et al., 2020). 

Generalized likelihood uncertainty estimation (GLUE; Beven & Binley, 1992) and 

Differential Evolution Adaptive Metropolis (DREAM; Vrugt et al., 2009) are two popular 

Bayesian methods to address different model configurations’ issues. GLUE weights model 

outputs based on data-fitting performance and then uses behavioral sampled models for 

ensemble forecasting. DREAM, on the other hand, is a more advanced formal Bayesian 

methods sampling model from the posterior. Instead of proposing new methods, this 

chapter compares model output uncertainties (both natural and human systems) under 

different model configurations (e.g., number of parameters and model structures). We 

quantify the model uncertainty brought by different model configurations using a variance-

based uncertainty decomposition to evaluate uncertainty properties under different model 

structural assumptions in CNHS. We introduce the term “equifinal model representatives” 

(EMRs) to describe the selected model configurations that represent the range of model 

variability over the equifinal space (i.e., space of model configurations that produce similar 

model outcomes), and we refer to model output uncertainty as simply “model uncertainty” 

throughout the rest of the chapter for simplicity. 



67 

 

This chapter aims to capture natural and human system model uncertainty given the 

available data with two hypotheses. First, model uncertainty in an exploratory analysis 

would likely increase with model complexity, given uncertain input data (e.g., climate 

forcing) and different model configurations. Second, the inclusion of a learning mechanism 

in the human system model can potentially offset the impact of the natural system's 

variability on model uncertainty. The Yakima River Basin (YRB) in the Northwest United 

States, an agriculture-dominated basin that heavily relies on irrigation, was selected as the 

study area to test these hypotheses. We presented four tasks: (a) quantify model uncertainty 

of CNHS in exploratory simulations, (b) decompose model uncertainty into different model 

configurations, and input data uncertainty (e.g., climate scenario uncertainty and internal 

climate variability) using the law of total variance, (c) compare model uncertainty and 

model complexity, and (d) observe the uncertainty offsetting relationship between natural 

and human systems in CNHS modeling. 

The chapter is structured as follows. Section 4.2 introduces the YRB study area and 

the climate change scenario design. The identification of EMRs, the uncertainty 

decomposition method, and the modeling schema are presented in Section 4.3 . Section 4.4  

compares the decomposition from coupled models with different model complexities. 

Discussion of additional uncertainty sources in CNHS modeling and limitations of the 

models is presented in Section 4.5 , followed by the conclusions in Section 4.6 . 

4.2  Study area and materials 

4.2.1  Yakima River Basin 

The YRB is selected as the study area and is shown in Figure 4-1. The YRB is a basin 

dominated by agriculture. Orchards (127,934 acres, 29.6%), small grains (67,434 acres, 
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15.6%), and corn (63,163 acres, 14.6%) (USDA, 2017 agriculture census) are the primary 

crops in the area. The precipitation in the YRB is concentrated in the mountains during the 

winter season (November–February). Agriculture heavily relies on irrigation; however, 

irrigation demands vary with the uncertain climate and the vicissitude of crop types across 

the growing season (late March to early October). Irrigation is facilitated by five major 

reservoirs (Keechelus, Kachess, Cle Elum, Bumping, and Rimrock), which are jointly 

operated by the U.S. Bureau of Reclamation (USBR). The irrigation operation (i.e., storage 

control) usually starts in July and continues through September to fulfill downstream 

demands (USBR, 2002). During this major storage control period, the streamflow at Parker 

gauge is tightly maintained by USBR to meet flow targets that range from 8.5–16.99 m3/s 

(300 to 600 ft3/s), based on available water (USBR, 2002). The streamflow in this period 

is a policy concern for USBR. Therefore, we adopt the median value of mean monthly 

streamflow from July to September at the Parker gauge over a given period (𝑄𝑀; Equation 

4-1) as the natural system indicator for the model uncertainty analysis: 

 𝑄𝑀 = 𝑚𝑒𝑑𝑖𝑎𝑛 ({
1

3
∑ 𝑄𝑦,𝑚
9
𝑚=7 ; 𝑦 = 1,… , 𝑝}) (4-1) 

where 𝑄𝑦,𝑚 is the monthly streamflow of month 𝑚 in year 𝑦 and 𝑝 is the number of years. 

Note that the flow target standard is not static. The flow target standard of the Parker gauge 

is affected by district conservation programs. Based on historical data, we set the flow 

targets equal to 9.4 m3/s (1960–1984) and 14.4 m3/s (1985–2013) for the model calibration, 

where we use the flow deviation from the target as a driving force for the learning process 

of the water diversion model (Section 4.3.2 ). 
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Figure 4-1. System diagram of Yakima River Basin (YRB). S1, S2, and S3 and R1, R2, 

and R3 are reservoir inflow and release models, respectively. YRB coupled natural-human 

model (yellow-colored area), which consists of three subbasins (yellow circles are their 

outlets) and five irrigation diversion districts (green boxes), is the focus of uncertainty 

analysis. 

 

In addition, we define the median value of the annual diversion of five districts over 

a given period (𝐷𝑀; Equation 4-2) as the human system indicator that abstracts farmers' 

behaviors (e.g., crop selection and irrigation measures) for the model uncertainty analysis: 

 𝐷𝑀 = 𝑚𝑒𝑑𝑖𝑎𝑛({∑ 𝐷𝑦,𝑎𝑔𝑎𝑔∈𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑠 ; 𝑦 = 1,… , 𝑝}) (4-2) 

where 𝐷𝑦,𝑎𝑔 is the annual diversion of agent 𝑎𝑔 in year 𝑦. We also define the median value 

of shortage frequency (𝑆𝑀 ; Equation 4-3) as an auxiliary indicator that represents the 

potential crop losses that farmers tend to avoid: 

 𝑆𝑀 = 𝑚𝑒𝑑𝑖𝑎𝑛({∑ 𝑆𝑦,𝑟
20
𝑟=1 ; 𝑦 = 1,… , 𝑝}) (4-3) 
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where 𝑆𝑦,𝑟 is a shortage index experienced in internal climate variability realization 𝑟. 𝑆𝑦,𝑟 

is equal to 1 if the total diversion request of five agents is not fulfilled in that year; otherwise, 

𝑆𝑦,𝑟 is equal to 0. Higher 𝑆𝑀 implies a lower variation in 𝑄𝑀, since the streamflow is likely 

to approximate minimum flow requirements. 

The YRB coupled natural-human model (Figure 4-1) includes hydrological and 

water diversion models. The hydrological model contains three subbasins, Umtanum 

(328,818.70 ha), Naches (203,799.79 ha), and Parker (291,203.80 ha), and the diversion 

model includes five irrigation districts: Kittitas, Yakima-Tieton (Tieton), Roza, Wapato, 

and Sunnyside Valley (Sunnyside). Their diversion points are all above the Parker gauge. 

The details of these five districts, such as water rights, average annual diversions, and 

district areas, are summarized in Table C1 in Appendix C.3. We define five major irrigation 

districts in the basin as agents that make annual diversion requests. The inclusion of these 

five irrigation districts in the water diversion model abstracts possible causes of changes in 

diversions (land use, conservation programs, climate, and farmers' subjective decisions) 

into the empirical equations presented in Section 4.3.2 . 

Reservoirs are another human component in the YRB. The reservoir model uses the 

simulated inflows of S1, S2, and S3 (whose drainage areas are equal to 83,014.25, 

11,601.47, and 28,016.20 ha, respectively); storage status; and pre-defined fixed 

operational rules to simulate the reservoir releases. These releases are then used as input 

data for the YRB coupled model for simplicity. Namely, the reservoir releases constrain 

the downstream water users' choices. For readers interested in finding optimal reservoir 

operating rules or interactions between reservoirs and diversion agents, we refer them to 

Giuliani et al. (2016) and Madani and Hooshyar (2014), respectively. 
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In sum, the 𝑄𝑀 and 𝐷𝑀 uncertainties under an exploratory analysis accumulate the 

input data uncertainty (e.g., reservoir releases and climate) and the errors of simplification 

(i.e., the conceptualization of physical mechanisms) in both the natural process (e.g., 

hydrological model) and human behaviors (e.g., water diversion model). 

4.2.2  Data and climate change scenarios 

We use data from 1960 to 2013 as the diagnostic period to develop the model. The data are 

separated into calibration (1960–1999) and validation (2000–2013) periods. The weather 

data (i.e., precipitation and temperature) are collected from Livneh et al. (2015), and the 

reservoir storage and release, streamflow, and diversion data are downloaded from the 

USBR website. The precipitation data are bias-corrected through a simple annual water 

balance method to solve the temporal inconsistency issue mentioned in the limitation 

section in Livneh et al. (2015). 

 The weather inputs for the exploratory analysis (2021–2100) are generated by 

adjusting annually bootstrapped historical time series to different climate change scenarios 

(Figure 4-2). The climate change scenarios are defined as combinations of linearly 

interpolated precipitation ratios (𝑃𝐹𝑟𝑎𝑡𝑖𝑜; average annual precipitation in future periods to 

the baseline; lines in Figure 4-2a) and temperature deltas (𝑇𝐹𝑑𝑒𝑙𝑡𝑎 ; average annual 

temperature in future periods minus the baseline; lines in Figure 4-2b) that are selected 

from five quantile values (q0.1, q0.3, q0.5, q0.7, and q0.9) over the range of 20 general 

circulation models (GCMs; Taylor et al., 2012; boxplots in Figure 4-2; Table C2 in 

Appendix C.3) in the 2030s, 2050s, 2070s, and 2090s. Such a climate change scenario 

setting is similar to the climate stress test in Decision Scaling (Brown et al., 2012); however, 

the climate changes we tested are limited within the range of GCMs. 
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Figure 4-2. (a) Precipitation ratios and (b) temperature deltas sampled from five quantile 

values over the range of 20 GCMs (boxplots) under RCP 2.6 (left column) and RCP 8.5 

(right column), respectively, in the 2030s, 2050s, 2070s, and 2090s. Future weather time 

series were generated by adjusting annually bootstrapped time series with climate change 

scenarios, combinations of linearly interpolated ratios, and deltas. 

 

This chapter adopts two representative concentration pathways (RCPs), RCP 2.6 and 

RCP 8.5, which represent mild and severe future climate projections, respectively. By 

selecting two distinct climate change scenarios, we could potentially maximize the ability 

to separate climate change signals from noises. As a result, we generate 25 climate change 

combinations (5 𝑃𝐹𝑟𝑎𝑡𝑖𝑜× 5 𝑇𝐹𝑑𝑒𝑙𝑡𝑎) per RCP. For exploratory simulations, the climate 

change scenarios are statistically downscaled by the delta method (Walsh et al., 2018), to 

which we apply 𝑃𝐹𝑟𝑎𝑡𝑖𝑜 and 𝑇𝐹𝑑𝑒𝑙𝑡𝑎 to 20 annually bootstrapped time series sampled from 

1960 to 2013 in historical annual slices (daily precipitation and temperature time series of 
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the entire year). This enables us to incorporate internal climate variability and output future 

weather time series (𝑃𝑓𝑢𝑡𝑢𝑟𝑒 and 𝑇𝑓𝑢𝑡𝑢𝑟𝑒; Equation 4-4): 

 {
𝑃𝑓𝑢𝑡𝑢𝑟𝑒,𝑦 = 𝑃𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝,𝑦 × 𝑃𝐹𝑟𝑎𝑡𝑖𝑜,𝑦
𝑇𝑓𝑢𝑡𝑢𝑟𝑒,𝑦 = 𝑇𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝,𝑦 + 𝑇𝐹𝑑𝑒𝑙𝑡𝑎,𝑦

, 𝑦 ∈ [2021,2100], 𝑦 ∈ ℤ (4-4) 

where 𝑃 and 𝑇 are annually bootstrapped daily precipitation and temperature time series, 

respectively. Subscript  𝑦  denotes the year. In sum, we generate 1,000 realizations (25 

climate change combinations × 2 RCPs × 20 bootstrapped time series) for the exploratory 

analysis. Note that we only consider a subset of climate input data uncertainty in this 

chapter; other uncertainties, like single GCM outputs and different downscaling methods, 

are not included. 

4.3  Methods 

4.3.1  Hydrological model 

The semi-distributed hydrological model developed for the YRB is made of the modified 

hydrological module of the Generalized Watershed Loading Functions (GWLF; Haith & 

Shoemaker, 1987; Tung & Haith, 1995) and the Lohmann routing model (Lohmann et al., 

1998; Wi et al., 2015). The hydrological module of the GWLF is a lumped rainfall-runoff 

model, which simulates daily streamflow by summing the surface quick flow, which is 

computed by the NRCS curve number method and subsurface flow (Haith et al., 1996). 

The modified version further includes a baseflow component (Luo et al., 2012) to depict 

low flow patterns. The Lohmann routing model is a simple linear transfer function model 

that considers routing both within the subbasin (concentration time of subbasin runoff to 

reach the outlet) and in rivers (from one upstream subbasin outlet to a lower subbasin 

outlet). The Lohmann routing model can be derived independently from the GWLF, and 
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connecting its results with GWLF-simulated streamflow forms the semi-distributed 

hydrological model for the YRB. 

 

Table 4-1. Calibration Parameter Bounds for Hydrological and ABM Models. 

Model Sub-model Parameter name Unit Code Bound 

H
y
d
ro

lo
g
ic

al
 m

o
d
el

 

GWLF Curve number -- 𝐶𝑁2 [25, 100] 

Interception coefficient -- 𝐼𝑆 [0, 0.5] 

Recession coefficient -- 𝑅𝑒𝑠 [10-3, 0.5] 

Deep seepage coefficient -- 𝑆𝑒𝑝 [0, 0.5] 

Baseflow coefficient -- 𝛼 [0, 1] 

Percolation coefficient -- 𝛽 [0, 1] 

Available/soil water capacity cm 𝑈𝑟 [1, 15] 

Degree-day coefficient for 

snowmelt  

cm/°C 𝐷𝑓 [0, 1] 

Land cover coefficient -- 𝐾𝑐 [0.5, 1.5] 

Lohmann 

routing 

Subbasin unit hydrograph 

shape parameter 

-- 𝐺𝑆 [1, 100] 

Subbasin unit hydrograph rate 

parameter 

-- 𝐺𝑅 [10-4, 100] 

Wave velocity in the 

linearized Saint–Venant 

equation 

m/s 𝑉𝑒 [0.5, 100] 

Diffusivity in the linearized 

Saint–Venant equation 

m2/s 𝐷𝑖 [200, 5000] 

A
B

M
 m

o
d
el

 

 Return flow factor -- 𝑅𝑓 [0, 0.5] 

 Upper flow deviation 

threshold  

m3/s 𝐿𝑈 [25, 50] 

 Lower flow deviation 

threshold 

m3/s 𝐿𝐿 [0, 15] 

 Learning rate -- 𝛾 [0, 1] 

 Standard deviation modifier m3/s 𝑆𝑖𝑔 [0, 2]a 

 Prorated ratio -- 𝑅 [0.4, 1] 

 Slope of linear model m3/s/cm 𝑎𝐿  [0, 0.5] 

 Intercept of linear model m3/s 𝑏𝐿 [-2, 2]a 

 Quadratic coefficient of 

quadratic model 

m3/s/cm2 𝑎𝑄  [-27, 11.5]a 

 Slope of quadratic model m3/s/cm 𝑏𝑄  [-12, 42]a 

 Intercept of quadratic model m3/s 𝑐𝑄  [-24, 10]a 
a Union bound over five diversion agents. Each has customized bound estimated 

according to historical diversion data. 
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The hydrological model in the YRB coupled model (Figure 4-1) contains 47 

parameters that must be calibrated (27 GWLF + 20 Lohmann), where each subbasin has a 

unique parameterization. The S1, S2, and S3 subbasin models used to simulate reservoir 

inflows each have 11 parameters involved in the calibration process (9 GWLF + 2 

Lohmann, GS and GR). In sum, the four hydrological models (S1, S2, and S3 subbasin 

models and the YRB coupled model) are independently calibrated. The calibrated 

parameters, abbreviations, and bounds are summarized in Table 4-1. 

The calibration is performed by a genetic algorithm (GA) with an objective function 

that differs for each calibration (Table C3 in Appendix C.3). For each subbasin model, the 

objective is to maximize the Kling-Gupta efficiency (KGE; Gupta et al., 2009; Equation 4-

5), which comprehensively takes correlation, variability bias, and mean bias into account. 

For the integrated model, the objective is to maximize a penalized KGE in which 1 − 𝐷̅, 

the mean annual diversion shortage, is added to the KGE as a penalty factor (Table C3 in 

Appendix C.3): 

 KGE = 1 − √(𝑟 − 1)2 + (
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
− 1)

2

+ (
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
− 1)

2

 (4-5) 

where 𝑟 is the Pearson correlation coefficient, and 𝜇 and 𝜎 denote the mean and standard 

deviation of flows, respectively. The subscripts 𝑜𝑏𝑠  and 𝑠𝑖𝑚  refer to observed and 

simulated streamflow time series, respectively. In the GA setup, we use roulette wheel 

selection, uniform crossover (crossover probability = 0.5), and uniform mutation (mutation 

probability = 0.1), which are coded under the Distributed Evolutionary Algorithms in 

Python (DEAP; Fortin et al., 2012) framework. Theoretically, the global optimum can be 

found with the mutation mechanism involved if the GA runs long enough, but it is still 

likely to be trapped in the local optima given limited computational resources, especially 
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with highly nonlinear problems. Hence, we do not aim to find the global optima. Instead, 

we consider multiple local optima with similar performance (i.e., above a certain threshold) 

as a form of model configuration uncertainty. The detailed GA calibration settings are 

provided in Table C3. 

4.3.2  Human Model 

4.3.2.1 Water Diversion Model 

For the water diversion model in the YRB coupled model, we define each of the five 

irrigation districts as agents. These five agents made their annual irrigation requests on 

March 1st every year. In our design, the annual pattern of the historical diversion is 

described by three deterministic components and one stochastic component. The three 

deterministic components are learning, adaptive, and emergency response components. 

The learning component enables agents to adjust their diversion request references 

(𝐷𝑖𝑣𝑟𝑒𝑞,𝑟𝑒𝑓) to achieve a goal (i.e., flow target at the Parker gauge) in the long run by 

learning from the flow deviation of the flow target through a set of empirical Equations 4-

6 to 4-9: 

 𝐷𝑖𝑣𝑟𝑒𝑞,𝑟𝑒𝑓,𝑦 = 𝐷𝑖𝑣𝑟𝑒𝑞,𝑟𝑒𝑓,𝑦−1 + 𝑉𝑎𝑣𝑔,𝑦 × 𝛾 (4-6) 

 𝑉𝑎𝑣𝑔,𝑦 =
1

10
∑ 𝑉𝑦−𝑖
10
𝑖=1  (4-7) 

where 𝛾 is the learning rate, subscript 𝑦 denotes the year, and 𝑉𝑎𝑣𝑔 is the average strength 

value, with a ten-year rolling window indicating the magnitude and learning direction (e.g., 

increase 𝐷𝑖𝑣𝑟𝑒𝑞,𝑟𝑒𝑓,𝑦  if 𝑉𝑎𝑣𝑔,𝑦  is positive, or decrease 𝐷𝑖𝑣𝑟𝑒𝑞,𝑟𝑒𝑓,𝑦  if 𝑉𝑎𝑣𝑔,𝑦  is negative). 

This ten-year rolling window also creates learning momentum in the learning direction of 

𝐷𝑖𝑣𝑟𝑒𝑞,𝑟𝑒𝑓 , where 𝑉𝑎𝑣𝑔  needs several (consecutive) counter events (e.g., 𝑉 = 1  when 
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𝑉𝑎𝑣𝑔 < 0 or 𝑉 = −1 when 𝑉𝑎𝑣𝑔 > 0) to reverse its sign (i.e., the learning direction of 

𝐷𝑖𝑣𝑟𝑒𝑞,𝑟𝑒𝑓). The events are denoted as 𝑉 and calculated by Equation 4-8: 

 𝑉𝑦 = {

  1 𝑖𝑓 |𝐷𝑒𝑦| > 𝐿𝑢  𝑖𝑓 𝐷𝑒𝑦 > 0

−1 𝑖𝑓 |𝐷𝑒𝑦| < 𝐿𝑙  𝑖𝑓 𝐷𝑒𝑦 < 0

  0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4-8) 

 𝐷𝑒 = 𝑄789 − 𝑄𝑡𝑎𝑟𝑔𝑒𝑡 (4-9) 

where 𝐿𝑢 and 𝐿𝑙 are the upper and lower flow deviation thresholds, respectively. These two 

parameters control how sensitive an agent is to wet or dry hydrological conditions. 𝐷𝑒 is 

the deviation of the average flow from July to September (𝑄789) relative to the flow target 

(𝑄𝑡𝑎𝑟𝑔𝑒𝑡), as shown in Equation 4-9. We provide an example of this learning process in 

Figure C1. To maintain a rational value for 𝐷𝑖𝑣𝑟𝑒𝑞,𝑟𝑒𝑓, we subjectively bound 𝐷𝑖𝑣𝑟𝑒𝑞,𝑟𝑒𝑓 

in a range of 1.2× the historical maximum and 0.8× the historical minimum from 1960 to 

2013 because it is unlikely that diversion will be less than 80% of the historical minimum, 

given continuous economic growth and associated water use. Also, it is unlikely that the 

diversion can be greater than 120% of the historical maximum for the years of the 

simulation, even with technology improvement (e.g., irrigation efficiency), given the 

physical constraints of available water and canal capacities. 

The adaptive component is designed to capture short-term variation in diversion 

requests, which are believed to be induced by different weather conditions. We consider 

two alternative functional forms governing agent adaptive diversion behavior: linear 

(Equation 4-10) or quadratic (Equation 4-11) functions. 

 𝐷𝑖𝑣𝑟𝑒𝑞,𝑚𝑢,𝑦 = 𝐷𝑖𝑣𝑟𝑒𝑞,𝑟𝑒𝑓,𝑦 + 𝑎𝐿 × 𝑃11−6,𝑦 + 𝑏𝐿 (4-10) 

 𝐷𝑖𝑣𝑟𝑒𝑞,𝑚𝑢,𝑦 = 𝐷𝑖𝑣𝑟𝑒𝑞,𝑟𝑒𝑓,𝑦 + 𝑎𝑄 × 𝑃11−6,𝑦
2 + 𝑏𝑄 × 𝑃11−6,𝑦 + 𝑐𝑄 (4-11) 
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where 𝑎𝐿 and 𝑏𝐿 are parameters for a linear function, and subscript 𝑦 denotes the year. 𝑎𝑄, 

𝑏𝑄, and 𝑐𝑄 are parameters for a quadratic function. The linear function assumes farmers 

will strictly divert more water in wet years. The quadratic function can capture the more 

complex phenomenon. For example, farmers start to divert less water when precipitation 

reaches a certain level because irrigation is not needed to maintain soil moisture (Figure 

C2). 𝐷𝑖𝑣𝑟𝑒𝑞,𝑚𝑢 is the mean of the annual diversion request. 𝑃11−6 is the total precipitation 

from November to June in the reservoir catchments. 𝑃11−6  abstracts the water storage 

conditions above the reservoirs (e.g., snowpack and reservoir storage; November to 

February) prior to a decision and a perfect precipitation forecast in the first half of the 

growing season (March to June). Precipitation in the latter half of the growing season (July 

to October) may not affect diversion requests because this decision is often made before 

the growing season; thus, it is not as informative in deciding 𝐷𝑖𝑣𝑟𝑒𝑞,𝑚𝑢. 

𝑃11−6 is also used as an indicator to trigger the emergency response component. If 

𝑃11−6,𝑦 is lower than a given threshold (i.e., drought year), then the emergency response 

component will take the place of the adaptive component and prorate 𝐷𝑖𝑣𝑟𝑒𝑞,𝑟𝑒𝑓,𝑦 

according to a calibrated constant ratio (𝑅) in Equation 4-12: 

 𝐷𝑖𝑣𝑟𝑒𝑞,𝑚𝑢,𝑦 = 𝐷𝑖𝑣𝑟𝑒𝑞,𝑟𝑒𝑓,𝑦 × 𝑅 (4-12) 

Next, the stochastic component of agent behavior is computed by: 

 𝐷𝑖𝑣𝑟𝑒𝑞,𝑦 = 𝐷𝑖𝑣𝑟𝑒𝑞,𝑚𝑢,𝑦 + 𝑅𝑛 × 𝑆𝑖𝑔 (4-13) 

where 𝐷𝑖𝑣𝑟𝑒𝑞 is the annual diversion request, and subscript 𝑦 denotes the year. We use a 

matrix to represent the covariance coefficient among historical agent diversion decisions 

to mimic the “social norm” effect (i.e., farmer diversion decisions will correlate to some 

degree with neighbor decisions; Bicchieri and Muldoon, 2014), and 𝑅𝑛 is a random vector 
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sampled from a multivariate normal distribution with this covariance matrix (i.e., social 

norm effect matrix). 𝑆𝑖𝑔 is the calibrated standard deviation modifier, representing the 

modification of the randomness level. Finally, 𝐷𝑖𝑣𝑟𝑒𝑞 is disaggregated into a daily scale 

based on historical monthly reduction proportions to continue the simulation. Note that the 

return flow (𝑄𝑟) is computed from the actual diversion (𝐷𝑖𝑣) shown below: 

 𝑄𝑟,𝑑 = 𝑓𝑟𝑜𝑢𝑡(𝑅𝑓 × 𝐷𝑖𝑣𝑑) (4-14) 

where 𝑓𝑟𝑜𝑢𝑡(∙) represents the routing process within the subbasin of the returned outlet, 𝑅𝑓 

is the return flow factor, and the subscript 𝑑 is the day.  

 We simulate five different diversion agent types in the YRB coupled models. The 

five coupled models are, from simple to complex, (1) static model, 𝑀𝑠, (2) adaptive model 

with linear functions, 𝑀𝐴,𝐿, (3) adaptive model with quadratic functions, 𝑀𝐴,𝑄, (4) learning 

adaptive model with linear functions, 𝑀𝐿,𝐿, and (5) learning adaptive model with quadratic 

functions, 𝑀𝐿,𝑄. The complexities of the coupled models depend on how we simulate agent 

diversion behaviors. Agents in 𝑀𝐿,𝐿 and 𝑀𝐿,𝑄 have all components, enabling them to learn 

to capture long-term trends and adapt to short-term shocks, with the difference in the 

selected adaptive function mentioned above. The learning component is omitted in the 

adaptive models (i.e., 𝑀𝐴,𝐿  and 𝑀𝐴,𝑄 ), which enables agents to capture short-term 

variations without learning (constant 𝐷𝑖𝑣𝑟𝑒𝑞,𝑟𝑒𝑓). 𝑀𝑠 is a deterministic model that only has 

the emergency response component, which is designed to mimic a traditional method that 

considers the diversion demand as a constant/deterministic input. The actual diversion 

variation from an agent only comes from physical constraints (e.g., minimum flow 

requirements) and prorated water rights during a drought year, represented by the 
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emergency response component. Table 4-2 summarizes the diversion agent setup for these 

five YRB coupled models. 

 

Table 4-2. Summary of diversion agent type setup of five YRB coupled models. 

Component 
Coupled model 

𝑀𝑠 𝑀𝐴,𝐿 𝑀𝐴,𝑄 𝑀𝐿,𝐿 𝑀𝐿,𝑄 

Emergency response 

component 
✓ ✓ ✓ ✓ ✓ 

Adaptive component -- ✓ ✓ ✓ ✓ 

Learning component -- -- -- ✓ ✓ 

Stochastic component -- ✓ ✓ ✓ ✓ 

Number of parameters 

per agent 
2 4 5 7 8 

Calibrated parameters  
𝑏𝐿 , R, 

𝑅𝑓 

𝑎𝐿 , 𝑏𝐿 , 

R, Sig, 

𝑅𝑓 

𝑎𝑄 , 𝑏𝑄 , 

𝑐𝑄, R, Sig, 

𝑅𝑓 

𝛾, 𝐿𝑢 , 𝐿𝑙 , 𝑎𝐿 , 

𝑏𝐿, R, Sig, 𝑅𝑓 

𝛾 , 𝐿𝑢 , 𝐿𝑙 , 𝑎𝑄 , 

𝑏𝑄 , 𝑐𝑄 , R, Sig, 

𝑅𝑓 

 

Similar to the hydrological model calibration, we maximize a penalized KGE, where 

the penalty here is 10 × (1 − 𝐷̅) (Table C3). Note that we use the mean of ten model 

simulations in an evaluation of the GA algorithm to address the model stochasticity issue. 

The detailed calibration settings and calibration parameter bounds are provided in Table 

C3 and Table 4-1, respectively. The ODD+D description (Müller et al., 2013) for the ABM 

is shown in Table C4. 

4.3.2.2 Reservoir model 

Reservoirs are another human component in the YRB that we consider as input data. To 

build the reservoir release simulation model for exploratory analysis, we empirically set up 

monthly operational rules based on the monthly simulated inflows forecast (S1, S2, and 

S3), storage status, and control periods (flood or storage). Then, the simulated monthly 

releases are uniformly disaggregated into daily values. This has no effect on our results, 

which are presented on an annual scale. We group the adjacent Keechelus, Kachess, and 
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Cle Elum reservoirs into one representative for simplicity, as shown in Figure 4-1. 

Consequently, we have three reservoir models (R1, R2, and R3). The pseudo-code of 

reservoir models is provided in Figure C3 in Appendix C.3. 

4.3.3  Model uncertainty decomposition 

Model uncertainty is attributed to various uncertainty sources. We adopt a variance-based 

uncertainty decomposition to isolate model uncertainty caused by different model 

configurations and input data. Figure 4-3 shows this concept. Using GA, or any other 

calibration methods (e.g., dynamically dimensioned search algorithm; Tolson & 

Shoemaker, 2007), to calibrate nonlinear models often result in multiple model 

configurations with similar outcomes (because most methods cannot guarantee the global 

optimum in a nonlinear solution space). We call such models as “equifinal models” (i.e., 

different model configurations) in this chapter. An infinite number of equifinal models 

(gray area) could be found within a continuous (e.g., real number) or unbounded equifinal 

space. For example, infinite parameter combinations are within the given calibration 

bounds (Table 4-1). It is impossible to evaluate or identify this infinite number of equifinal 

models. Therefore, we define an EMRs identification step (orange box in Figure 4-3) to 

identify a finite number of EMRs (blue lines in Figure 4-3) to represent the range of model 

variability over the equifinal space for the uncertainty evaluation. This chapter separately 

analyzes the uncertainty of five coupled model structures with different diversion agent 

types. 
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Figure 4-3. Conceptual diagram of EMRs and model uncertainty decomposition. Blue 

lines indicate model uncertainty caused by different model configurations. Light blue zones 

represent model uncertainty introduced by uncertain input data (e.g., climate uncertainty). 

 

In application, model uncertainty is composed of the different model configurations 

from EMRs (e.g., variation of blue lines in Figure 4-3) and the input data (e.g., blue zone 

in Figure 4-3). To decompose the model uncertainty, we apply the law of total variance. In 

the first step, we isolate the uncertainty of the different model configurations (e.g., different 

parameter sets producing similar outcomes) by: 

 Var(𝐼) = E[Var(𝐼|𝐸𝑀𝑅)] + Var(E[𝐼|𝐸𝑀𝑅]) (4-15) 

The total model uncertainty, Var(𝐼) , of an output indicator ( 𝐼 ; e.g., 𝑄𝑀  and 𝐷𝑀 ) is 

decomposed into two parts: uncertainty caused by the input data, E[Var(𝐼|𝐸𝑀𝑅)] and 

uncertainty caused by the variation of EMRs, Var(E[𝐼|𝐸𝑀𝑅]) . In an exploratory 

application, input data uncertainty is often related to climate uncertainty. In this chapter, 

the climate uncertainty is further decomposed into climate change scenario uncertainty 

(e.g., different combinations of 𝑃𝐹𝑟𝑎𝑡𝑖𝑜 and 𝑇𝐹𝑑𝑒𝑙𝑡𝑎) and internal climate variability (e.g., 
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different realizations under a given climate scenario). We can apply the law of total 

variance again to E[Var(𝐼|𝐸𝑀𝑅)] to have 

 𝐸[𝑉𝑎𝑟(𝐼|𝐸𝑀𝑅)] = E[Var(𝐼|𝐸𝑀𝑅, 𝐼𝐶𝑅 )] + E[Var(E[𝐼|𝐸𝑀𝑅, 𝐼𝐶𝑅 ])|𝐸𝑀𝑅)]  

  (4-16) 

where E[Var(𝐼|𝐸𝑀𝑅, 𝐼𝐶𝑅 )]  is the model uncertainty resulting from uncertain climate 

change scenarios. E[Var(E[𝐼|𝐸𝑀𝑅, 𝐼𝐶𝑅 ])|𝐸𝑀𝑅)]  represents the model uncertainty 

caused by internal climate variabilities, where 𝐼𝐶𝑅 is a realization under a given climate 

change scenario. The derivations of Equation 4-15 and Equation 4-16 are provided in 

Appendix C.1 and C.2, respectively. 

 To explain the impact of different model structures on the uncertainty in the co-

evolving CNHS, we adopt the following variance formula: 

 𝑉𝑎𝑟(𝑄𝑑𝑜𝑤𝑛) = 𝑉𝑎𝑟(𝑄𝑢𝑝 − 𝐷𝑖𝑣) = 𝑉𝑎𝑟(𝑄𝑢𝑝) + 𝑉𝑎𝑟(𝐷𝑖𝑣) − 2 × 𝐶𝑜𝑣(𝑄𝑢𝑝, 𝐷𝑖𝑣)  

  (4-17) 

Equation 4-17 indicates that if the upstream flow (𝑄𝑢𝑝; streamflow before diversion) and 

diversion (𝐷𝑖𝑣) are positively correlated, then the variance of downstream flow (𝑄𝑑𝑜𝑤𝑛; 

streamflow after diversion) will be lower than the sum of 𝑉𝑎𝑟(𝑄𝑢𝑝) and 𝑉𝑎𝑟(𝐷𝑖𝑣). That 

is, even if uncertainty in both the human and natural systems increases, i.e., 𝑉𝑎𝑟(𝑄𝑢𝑝) and 

𝑉𝑎𝑟(𝐷𝑖𝑣) both increase, it is possible for uncertainty in outputs, 𝑉𝑎𝑟(𝑄𝑑𝑜𝑤𝑛)to decrease 

if 𝑄𝑢𝑝  and 𝐷𝑖𝑣  are sufficiently positively correlated. This implies that learning and 

adaptive mechanisms, in which agents change 𝐷𝑖𝑣  in response to 𝑄𝑢𝑝 , can potentially 

offset streamflow uncertainty over time. Namely, the agent’s action co-evolves with the 

changing environment after they learn from environmental feedback (Woodard et al., 2019). 
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Figure 4-4. Modeling schema for the numerical experiment. Schema begins by calibrating 

the hydrological model and identifying HydroEMRs through the K-means algorithm; then, 

HydroEMRs drive ABM calibration and ABMEMRs identification. Identified EMRs are 

then applied to exploratory application and uncertainty analysis. 

 

The entire numerical experiment is visualized in Figure 4-4. It consists of (a) 

calibration and EMRs identification and (b) exploratory simulations and model uncertainty 

analysis. In the first part, the calibration is separated for the hydrological model and ABM. 

We first calibrate the hydrological model using weather data, observed reservoir releases, 

and irrigation diversions. After reaching the GA termination criteria (e.g., maximum 

generation), we identify two HydroEMRs following the procedure shown in the orange 

box in Figure 4-4. The chosen maximum generation as termination criteria ensures 

consistency in the number of evaluations for EMRs identification. During the EMRs 

identification step, we collect all simulations from the GA calibration and then select the 

top 1% models, that is, those with better fits, as feasible models. Then, we normalize those 

calibrated parameters into [0,1] according to their calibration bounds (Table 4-1) and input 

them into the K-means algorithm (Pedregosa et al., 2011). The number of clusters/EMRs 

is empirically determined from the explained variance elbow plot (e.g., two clusters for the 
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hydrological model; Bholowalia & Kumar, 2014; Figure C4 in Appendix C.3). After that, 

models with the best fit are selected within each cluster as EMRs. 

Next, we use these two HydroEMRs to drive ABM calibration. Following the same 

procedure as calibrating HydroEMRs, four ABMEMRs (elbow plot in Figure C5 in 

Appendix C.3) are found for each HydroEMRs. Note that the information (e.g., streamflow 

and diversion requests) is exchanged annually between the hydrological and water 

diversion models during the evaluation. We refer readers to Hyun et al. (2019) for more 

details about this coupling technique. Then, we repeat this calibration process for five 

coupled models with the different diversion agent types introduced in Section 4.3.2 . 

Therefore, at the end of the first part, eight EMRs (2 HydroEMRs × 4 ABMEMRs) are 

identified per coupled model and then applied to the second part, exploratory application. 

In the second part, we conduct exploratory simulations with 1,000 input realizations and 

then calculate indicators (𝑄𝑀 and 𝐷𝑀) for each EMRs of the five coupled models. Then, 

we repeat this exploratory Experiment 30 times to address the stochastic nature of our 

model. Consequently, we use 1,200,000 model evaluations (1,000 climate input 

realizations × 5 types of diversion agents × 8 EMRs × 30 iterations) for the model 

uncertainty analysis. 

4.4  Results 

4.4.1  Calibration and validation of EMRs 

This section describes the calibration and validation results of EMRs. Table 4-3 shows that 

both HydroEMR1 and HydroEMR2 have similar mean KGE values (0.672 and 0.675) in 

the calibration, and the differences are a result of different compromises in the subbasin 

KGE performance. For example, HydroEMR1 has a higher KGE at the Naches outlet, 
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while the Umtanum and Parker outlets perform better in HydroEMR2. The monthly time 

series plot is provided in Figure C6 in Appendix C.3, and calibration statistics are shown 

in (Table C6 and Figure C7 in Appendix C.3). 

 

Table 4-3. Monthly Calibration and Validation Results of Hydrological Models. 

Period Model Mean KGE Subbasin KGE 

Calibration HydroEMR1 0.672 Umtanum 0.653 

(1960–1999)   Naches 0.750 

   Parker 0.611 

 HydroEMR2 0.675 Umtanum 0.686 

   Naches 0.712 

   Parker 0.628 

Validation HydroEMR1 0.591 Umtanum 0.536 

(2000–2013)   Naches 0.752 

   Parker 0.487 

 HydroEMR2 0.599 Umtanum 0.569 

   Naches 0.712 

   Parker 0.517 

 

We show the ABMEMR calibration (1960–1999) and validation (2000–2013) for 

annual diversion results (separated by vertical dotted lines) for five coupled models (rows), 

from simple to complex (top to down), in Figure 4-5. The red lines are the observed data, 

and the grey areas are 95% confidence intervals. Each EMR result is one of four 

ABMEMRs (line styles) that are driven by HydroEMR1 (blue lines) or HydroEMR2 

(orange lines) and averaged over ten simulations. For example, EMR2.1 is the result of the 

coupled model consisting of HydroEMR2 and ABMEMR1. We show the detailed 

calibration statistics in Table C6 and Figure C8. In general, the EMRs of 𝑀𝑆 show the 

lowest variations because it is the simplest two-parameter deterministic model type. Two 

adaptive models (𝑀𝐴,𝐿 and 𝑀𝐴,𝑄) recreate short-term variations (e.g., yearly fluctuations), 
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while two learning adaptive models (𝑀𝐿,𝐿 and 𝑀𝐿,𝑄) capture both the long-term decrease 

and short-term variations. Figure 4-5 also shows that coupled models with quadratic 

functions have greater variation than the linear function, which implies that coupled models 

with quadratic functions have larger equifinal space. In Figure 4-5, column 2, Tieton’s 

diversion pattern is not well-captured, especially in 𝑀𝐴,𝑄 and 𝑀𝐿,𝑄; however, it has limited 

influence on the overall results due to the small diversion amount. The “spikes” in Tieton’s 

pattern are the diversion output governed by the emergency response component and the 

prorated ratio during drought years instead of the adaptive component. Tieton’s adaptive 

component output low diversions to achieve a better calibration objective value of the 

model. Although such diversion patterns are not realistic, we keep them in our uncertainty 

analysis because these EMRs satisfied our equifinal model definition (i.e., similar objective 

value in calibration). 

4.4.2  Comparing model complexity and uncertainty 

4.4.2.1 Uncertainty decomposition of natural system output (𝑸𝑴) 

We run the identified EMRs under 1000 future climate realizations 30 times each to 

calculate the 𝑄𝑀 uncertainty (i.e., Var(𝑄𝑀)). In Figure 4-6, we decompose Var(𝑄𝑀) into 

three parts that are attributed to three uncertainty sources: climate change scenario (blue 

areas; combinations of 𝑃𝐹𝑟𝑎𝑡𝑖𝑜  and 𝑇𝐹𝑑𝑒𝑙𝑡𝑎 ), internal climate variability (orange areas; 

bootstrapped realizations), and different model configurations (green areas; variation of 

EMRs) for five coupled models (columns), with mean values from 30 runs to address 

stochasticity in the ABM. The diversity of model configurations is contributed by 

variations of HydroEMRs (light green areas; 𝐶𝑜𝑛𝑓𝑖𝑔𝐻𝑦𝑑𝑟𝑜𝐸𝑀𝑅 ; 

Var(E[𝐼|𝐸𝑀𝑅, 𝐻𝑦𝑑𝑟𝑜𝐸𝑀𝑅]) ) and ABMEMRs (dark green areas; 𝐶𝑜𝑛𝑓𝑖𝑔𝐴𝐵𝑀𝐸𝑀𝑅 ; 



88 

 

E[Var(𝐼|𝐸𝑀𝑅, 𝐻𝑦𝑑𝑟𝑜𝐸𝑀𝑅)]). Figure 4-6a shows the actual variance value of 𝑄𝑀; Figure 

4-6b indicates the fractional contribution percentage of three uncertainty sources; and 

Figure 4-6c is the 𝑆𝑀 boxplot time series representing the shortage frequency of 20 internal 

climate variability realizations over climate change scenarios and EMRs. 

 

 

Figure 4-5. Calibration and validation results (separated by vertical lines) of five diversion 

irrigation districts (columns) for five coupled models (rows). Each EMR result is one of 

the four ABMEMRs driven by HydroEMR1 (blue lines) or HydroEMR2 (orange lines) that 

were averaged over 10 simulations. Red lines are observed data, and gray areas are 95% 

confidence intervals. 
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Figure 4-6. (a) Model uncertainty decomposition of 𝑄𝑀 for five coupled models (columns). 

(b) Fractional contribution percentage of decomposed variances. (c) Boxplot time series 

of 𝑆𝑀 with mean values (blue lines) and outliers (black dots). Three uncertainty sources 

were climate scenario uncertainty, internal climate variability, and different model 

configurations. 

 

For 𝑀𝑆 , the uncertainty caused by climate change scenarios increases over the 

simulation period, while the uncertainty driven by internal climate variability gradually 

decreases. The model configuration uncertainty is almost negligible (<0.3) in 𝑀𝑆. A similar 

pattern is observed in 𝑀𝐴,𝐿, where the model configuration uncertainty (<1) is only slightly 

larger than 𝑀𝑆 . For the more complex model 𝑀𝐴,𝑄 , we observe a significantly larger 

contribution from different model configurations. However, this trend is not present in 

models with the learning component, which we discuss later.  
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The increasing amount of blue areas in 𝑀𝑆, 𝑀𝐴,𝐿, and 𝑀𝐴,𝑄 indicates the limited 

ability of the agents in these coupled models to address long-term trends in climate change 

scenarios since the ABMs are not designed to “learn” from the long-term environmental 

changes. The adaptive component could absorb short-term shocks caused by internal 

climate variability, so 𝑀𝐴,𝐿 and 𝑀𝐴,𝑄 have smaller orange areas than 𝑀𝑆 (𝑀𝐴,𝑄<𝑀𝐴,𝐿<𝑀𝑆). 

However, the shrinking magnitude of uncertainty from climate variability toward the end 

of the simulation is caused by increasing shortage frequency, 𝑆𝑀 (Figure 4-6c). Diversion 

shortage implies that streamflow is at the minimum flow requirement, as no more water 

can be diverted to meet the demand. Therefore, increasing 𝑆𝑀  across climate change 

scenarios and EMRs results in lower internal climate variability in 𝑄𝑀. In addition, 𝑀𝐴,𝑄 

shows the smallest uncertainty caused by input data (i.e., blue and orange areas), but it has 

the largest model configuration uncertainty. Therefore, ignoring possible model 

configurations could artificially reduce uncertainty (i.e., no green area), which may affect 

the interpretation of model results and bias the concluding information.  

In Figure 4-6, coupled models with learning components (𝑀𝐿,𝐿 and 𝑀𝐿,𝑄) have much 

smaller 𝑄𝑀 uncertainty because agents in these models can learn to adjust their diversion 

requests for both long-term and short-term changes; this offsets the 𝑄𝑀  uncertainty 

contributed by input data (i.e., 𝑃𝑓𝑢𝑡𝑢𝑟𝑒  and 𝑇𝑓𝑢𝑡𝑢𝑟𝑒 ). Furthermore, we observe that the 

model configuration differences of 𝑀𝐿,𝐿  and 𝑀𝐿,𝑄  is primarily caused by ABMEMRs 

variations ( 𝐶𝑜𝑛𝑓𝑖𝑔𝐴𝐵𝑀𝐸𝑀𝑅 ), while the model configuration differences in 𝑀𝐴,𝑄  is 

contributed by both HydroEMRs and ABMEMRs variations (Figure 4-6a). The negligible 

𝐶𝑜𝑛𝑓𝑖𝑔𝐻𝑦𝑑𝑟𝑜𝐸𝑀𝑅 of the two learning adaptive models can again be attributed to learning 

abilities (i.e., achieving flow target by updating 𝐷𝑖𝑣𝑟𝑒𝑞,𝑟𝑒𝑓 ). When we use learning 



91 

 

adaptive models to simulate irrigation requests, the driver of ABMEMR (i.e., HydroEMR1 

or HydroEMR2) does not matter because agents could adjust their diversion behaviors 

according to feedback from different hydrological environments. Therefore, we observe 

smaller 𝐶𝑜𝑛𝑓𝑖𝑔𝐻𝑦𝑑𝑟𝑜𝐸𝑀𝑅 results in the exploratory simulations. Furthermore, the learning 

abilities of 𝑀𝐿,𝐿  and 𝑀𝐿,𝑄  result in a lower frequency of encountering shortages upon 

diversion (Figure 4-6c). 

4.4.2.2 Uncertainty decomposition of human system output (𝑫𝑴) 

After analyzing the model uncertainty of the nature system indicator (𝑄𝑀 ), we next 

consider how flexible agent behaviors need to be to reach the level of 𝑄𝑀  uncertainty 

revealed in Figure 4-6. Therefore, we examine similar variance decomposition plots for 

𝐷𝑀 (human-system indicator) in Figure 4-7, with the total model uncertainty of 𝑄𝑀 (Figure 

4-7c). 
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Figure 4-7. (a) Model uncertainty decomposition of 𝐷𝑀 for five coupled models (columns). 

(b) Fractional contribution percentage of decomposed variances. (c) Total model 

uncertainty of 𝑄𝑀 . Three uncertainty sources are climate scenario uncertainty, internal 

climate variability, and different model configurations. 

 

For 𝑀𝑆, the 𝐷𝑀 uncertainty gradually increases over time due to the climate change 

scenario uncertainty (Figure 4-7a). As we discussed earlier, diversion shortage dominates 

in 𝑀𝑆, where the quantity of available water under different input data (i.e., 𝑃𝑓𝑢𝑡𝑢𝑟𝑒 and 

𝑇𝑓𝑢𝑡𝑢𝑟𝑒) determines the model uncertainty for diversion behavior. Namely, if there is no 

diversion shortage, the variance of 𝐷𝑀 will be a flat line, with only the contribution of 

different model configurations because the diversion request is a fixed value in 𝑀𝑆. 

The greater internal climate variability fractional contribution (orange area in Figure 

4-7b) in 𝑀𝐴,𝐿  and 𝑀𝐴,𝑄 , compared to 𝑀𝑆 , is contributed by agent adaptability (e.g., 
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different diversion requests based on water supply conditions). Furthermore, variations 

caused by HydroEMR1 and HydroEMR2 play an important role in driving  𝐷𝑀  model 

configuration variations in 𝑀𝑆, 𝑀𝐴,𝐿, and 𝑀𝐴,𝑄, demonstrated by greater 𝐶𝑜𝑛𝑓𝑖𝑔𝐻𝑦𝑑𝑟𝑜𝐸𝑀𝑅 

than 𝐶𝑜𝑛𝑓𝑖𝑔𝐴𝐵𝑀𝐸𝑀𝑅  in Figure 4-7b. This is because 𝑀𝑆 , 𝑀𝐴,𝐿 , and 𝑀𝐴,𝑄  cannot learn. 

Therefore, the identified EMRs driven by different HydroEMRs show distinct patterns in 

calibration (Figure 4-5), leading to larger contributions from different model 

configurations in 𝐷𝑀 uncertainty.  

The two learning adaptive models, 𝑀𝐿,𝐿 and 𝑀𝐿,𝑄, show distinct patterns from the 

other three models. The 𝐷𝑀  uncertainty caused by climate change scenarios increases 

significantly over time, which is the opposite behavior as the 𝑄𝑀 shown in Figure 4-7c. 

This further indicates that agents can learn from environmental feedback (e.g., flow 

deviations) and then mitigate some environmental uncertainty through their flexibility in 

adjusting long-term diversion behaviors. These results visualize an opposing trend between 

𝑄𝑀 and 𝐷𝑀 uncertainties in CNHS. In the next section, we will mathematically explain this 

learning behavior. 

4.4.3  Model uncertainty and co-evolution in CNHS 

In the previous analysis, we show the uncertainty decomposition for both natural (𝑄𝑀) and 

human (𝐷𝑀) system outputs. We claim that the learning mechanism limits Var(𝑄𝑀) with 

more complex model designs. Although the two learning models exhibit greater 

uncertainties in human system behavior, the increasing magnitude of 𝐷𝑀 uncertainty is less 

than the decreasing magnitude of 𝑄𝑀  uncertainty. We hypothesize that co-evolution, 

particularly in the learning mechanism of CNHS, leads to such results. To test this 

hypothesis, we adopt Equation 4-17 and show the results at the Parker gauge in Figure 4-8. 
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Figure 4-8. Factors showing co-evolution, particularly with the learning mechanism, 

leading to overall lower model uncertainty. 𝑄𝑑𝑜𝑤𝑛, 𝑄𝑢𝑝, and 𝐷𝑖𝑣 are streamflow before 

diversion, streamflow after diversion, and diversion at Parker gauge, respectively. (a) 

Averaged (co)variances of five coupled models from 2030 to 2100. (b) Differences 

between averaged (co)variance from 2066 to 2100 and from 2030 to 2065. 

 

Figure 4-8 shows the value of each term in Equation 4-17 using the Parker gauge 

as an example. 𝑄𝑑𝑜𝑤𝑛, 𝑄𝑢𝑝, and 𝐷𝑖𝑣 are the streamflow before diversion, the streamflow 

after diversion, and the diversion at Parker gauge, respectively. The averaged (co)variances 

of five coupled models (x-axis) from 2030 to 2100 are shown in Figure 4-8a. Figure 4-8b 

shows differences between the averaged (co)variance from 2066 to 2100 and from 2030 to 

2065. 

Equation 4-17 shows that 𝑉𝑎𝑟(𝑄𝑑𝑜𝑤𝑛) can only be less than 𝑉𝑎𝑟(𝑄𝑢𝑝) only if 

𝐶𝑜𝑣(𝑄𝑢𝑝, 𝐷𝑖𝑣) is not zero and 2 × 𝐶𝑜𝑣(𝑄𝑢𝑝, 𝐷𝑖𝑣) is greater than 𝑉𝑎𝑟(𝐷𝑖𝑣). Following 

this logic, Figure 4-8a mathematically demonstrates that our designed agents act (i.e., 

divert) differently (i.e., co-evolve; green bars) according to the environment and indicates 

a decreasing pattern in 𝑉𝑎𝑟(𝑄𝑑𝑜𝑤𝑛) as the model becomes more complex (red bars). For 
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example, 𝑀𝑆 diverts different amounts of water based on the available water (𝑄𝑢𝑝). 𝑀𝐴,𝐿 

and 𝑀𝐴,𝑄 have larger covariance values because of their adaptability to short-term shocks. 

𝑀𝐿,𝑄  and 𝑀𝐿,𝐿  have the highest covariance value because they have both adaptive and 

learning capabilities. The 𝐶𝑜𝑣(𝑄𝑢𝑝, 𝐷𝑖𝑣) pattern of models with different complexities is 

highly correlated with the pattern in 𝑉𝑎𝑟(𝐷𝑖𝑣), verifying the design of our diversion agent 

given how closely an agent co-evolves with the environment. 

The decreasing trend in 𝑄𝑀  uncertainty (e.g., 𝑀𝐿,𝑄  and 𝑀𝐿,𝐿  in Figure 4-6a) only 

occurs when the difference in the summation of 𝑉𝑎𝑟(𝑄𝑢𝑝) and 𝑉𝑎𝑟(𝐷𝑖𝑣) is lower than the 

difference in 2 × 𝐶𝑜𝑣(𝑄𝑢𝑝, 𝐷𝑖𝑣) between the former and latter simulation periods (Figure 

4-8b). The negative difference of 𝑀𝑆 and 𝑀𝐴,𝐿 in 𝑉𝑎𝑟(𝑄𝑑𝑜𝑤𝑛) is primarily contributed by 

the decrease in 𝑉𝑎𝑟(𝑄𝑢𝑝) and the shortage-induced 𝐶𝑜𝑣(𝑄𝑢𝑝, 𝐷𝑖𝑣). 𝑀𝐴,𝑄  has a similar 

explanation: the difference in 𝑉𝑎𝑟(𝐷𝑖𝑣) is almost zero (i.e., the adaptability remains the 

same over the entire simulation). The most interesting results are in the two learning models, 

𝑀𝐿,𝑄  and 𝑀𝐿,𝐿 , where increasing 𝑉𝑎𝑟(𝐷𝑖𝑣)  results in a significant increase in 

𝐶𝑜𝑣(𝑄𝑢𝑝, 𝐷𝑖𝑣)  that leads to a larger magnitude of decreasing 𝑉𝑎𝑟(𝑄𝑑𝑜𝑤𝑛) . This 

demonstrates our explanation for 𝑄𝑀  variance decomposition results in the previous 

section and supports our hypothesis: learning behaviors in a human system can potentially 

offset the impact of a natural system’s variability on output uncertainty (i.e., 𝑉𝑎𝑟(𝑄𝑀). 

However, we do not extend these results to claim that the learning adaptive model is a 

better design. This chapter quantifies model uncertainty properties for different designs 

used to model CNHS. It is important to verify the existence of learning behavior or any 

other structural designs in a chosen case study; otherwise, uncertainty may be introduced 

from inappropriate structural assumptions. For this particular case study, we may argue 
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that 𝑀𝐿,𝐿 is a more appropriate model design as it has higher objective values in calibration 

(Table C6). 

4.5  Discussion 

4.5.1  Other sources of uncertainty in CNHS 

Our results, which show that learning adaptive models have less observed variance in the 

nature system (e.g., 𝑄𝑀), align with the philosophy of “adaptive management” strategies 

in facing increasing climate change uncertainty (Giordano & Shah, 2014; Karthe et al., 

2021). However, it is also important to consider the causes of decreasing nature system 

uncertainty. First, our results show that, if possible model configurations are ignored, 𝑄𝑀 

uncertainty is only driven by input data whose uncertainty appears to be smaller in the 

adaptive models than in the static model. This might lead to a false conclusion that the 

adaptive model is more reliable (i.e., less uncertain). Second, although utilizing learning 

adaptive models shows a decreasing trend in 𝑄𝑀 uncertainty, they could be impacted by 

uncertainty from incomplete knowledge of proposed model structural assumptions, such 

as a learning structure (Karthe et al., 2021), which would not be directly revealed in the 

modeling results. Such introduced assumption-based uncertainty could be a barrier to 

interpreting modeling results and implementing adaptive management strategies (Allen & 

Gunderson, 2011; Lee, 2001). Therefore, continuously monitoring (i.e., acquiring data) and 

communicating uncertainty among modelers, policymakers, and other stakeholders is 

essential. 

While this chapter decomposes specific uncertainties (e.g., input data and different 

model configurations), other uncertainty sources are not analyzed, such as indicator 

selection (Khatami et al., 2019), model resolution level (Saltelli et al., 2019), and coupling 
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structure (e.g., data exchange frequency and exchanged information). Some benchmark 

study cases may help the CNHS modeling community eliminate indicator selection factors 

when evaluating model uncertainty across different model designs (Vallario et al., 2021). 

However, the indicator selection procedure requires its own systematic study. For example, 

we choose KGE in this chapter, but other widely used indicators, like Nash-Sutcliffe 

efficiency (Nash & Sutcliffe, 1970) or R-squared, might lead to different uncertainty 

analysis results. Investigations of the uncertainty caused by the model resolution level and 

coupling structures will benefit the use of CNHS models in cross-scale (temporal and 

spatial) studies (Aburto et al., 2012; Fleischmann et al., 2019), especially when coupling 

to models with various simulation timesteps and frequency of information exchange. 

However, this requires each coupled-model component to be run over the full spectrum of 

temporal and spatial resolutions to set up comparable numerical experiments. This is 

particularly challenging when coupling to large-scale models or standalone software, 

which are often restricted to coarse or limited temporal or spatial resolutions. 

4.5.2  Limitations 

We identify several limitations in this chapter that could be improved in future studies. 

First, the reservoir settings are highly simplified, where reservoir releases are considered 

as input data. Interactions between reservoirs and water demands are ignored. Namely, the 

CNHS of the YRB is only partially tested. Second, we assume that calibrated agent 

behaviors (e.g., γ for learnability; 𝑎𝐿 and 𝑏𝐿 for linear adaptability; and 𝑎𝑄, 𝑏𝑄, and 𝑐𝑄 for 

quadratic adaptability) could be directly applied to exploratory analyses. In addition, agent 

learnability and adaptability might not remain the same in the future (Aburto et al., 2012) 

for more accessible and accurate forecast information or changing environmental 
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regulations. Third, we subjectively bound 𝐷𝑖𝑣𝑟𝑒𝑞,𝑟𝑒𝑓  based on historical records. This 

might affect uncertainty analysis results since canal capacity is possible to increase over 

our assumption (e.g., 120% of the historical maximum). Fourth, our numerical 

experimental design ignores some uncertainty sources. For example, we only consider a 

subset of input data uncertainty (i.e., climate change scenarios and internal climate 

variability), we ignore the downscaling uncertainty, and we follow the conventional 

calibration and validation procedure under the stationary assumption of the natural system, 

which a more comprehensive study can be done to evaluate the uncertainty brought by the 

stationary assumption. Also, based on the equifinal model definition, our identified EMRs 

could be approximations of a single local optimum rather than multiple local optima. We 

encourage the adoption of pre-calibration methods (Tarawneh et al., 2016), alternate 

calibration algorithms (Tolson & Shoemaker, 2007), and carefully selected feasibility 

model criteria (i.e., equifinal models) for model configuration uncertainty quantification in 

future projects focusing on case studies. 

4.6  Conclusions 

A deeper understanding of CNHS modeling enables us to better use modeling results to 

inform policymaking. This chapter explores modeling uncertainties. We quantify and then 

decompose the uncertainty of a coupled natural-human model (i.e., a semi-distributed 

hydrological model coupled with an agent-based water diversion model) into three sources 

by the law of total variance: (a) climate scenario uncertainty, (b) climate internal variability, 

and (c) model configuration uncertainty. The YRB in the Northwest US is adopted as our 

study area, where irrigation districts are defined as agents. We analyze how co-evolution 

influences the relationship between model output uncertainty and model complexity 
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through five coupled models with different water diversion agent types: (a) a static model, 

(b) an adaptive model with linear functions, (c) an adaptive model with quadratic functions, 

(d) a learning adaptive model with linear functions, and (e) a learning adaptive model with 

quadratic functions. 

Our hypotheses—(a) model uncertainty in an exploratory analysis will likely 

increase with model complexity, given uncertain input data (e.g., climate forcing), and 

different model configurations, and (b) the inclusion of a learning mechanism in a human 

system can potentially offset the impact of natural system’s variability on output 

uncertainty—are accepted, according to our results. The two learning adaptive models 

show a decreasing trend in the natural system output because agents learn and adapt to 

environmental changes via co-evolution between the two subsystems. The learnability and 

adaptability are revealed by increased variability of the human system outputs. Although 

the learning adaptive models generate smaller nature system output uncertainty, the 

modeler should be aware of how assumptions of model structure (e.g., Is the learning 

assumption appropriate in the exploratory analysis of a given case study?) affect the results. 

Finally, additional uncertainty sources should be investigated in future work, such as 

indicator selection, model resolution level, and coupling structure with a more 

sophisticated agent setup and scale-up experiments. 
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Chapter 5: Compounding Risks of Natural Hazards and 

Cyber-physical Attacks in a Smart Storm Water System 

 

Abstract 

Risk is a piece of critical information for system planning and investments of limited 

recourses. With the growing usage of Internet-of-Thing-based infrastructures, new 

cybersecurity risks were introduced to water systems. However, the compounding risks of 

natural hazards and cyber-attacks have not yet been widely evaluated. This chapter 

explores this concept and proposes a quantification method for such compounding risks. 

We implement the proposed method in a smart stormwater system, a pond-conduit network 

that has water level sensors and outflow gate actuators at each pond and is dynamically 

controlled in real-time, to quantify the compounding risks of storms and false data injection 

(FDI) on a flooding issue while considering sensor noises and weather forecast 

uncertainties. We show that FDI can intensify the flooding risks by raising the controlled 

pond water level by injecting false data to sabotage the feedback control system and cause 

it to output wrong outflow control signals. In addition, we find that the flooding risk 

patterns of different storm intensities are significantly altered by FDI, where compounding 

risks tend to be higher with smaller, more frequent storms. Such results indicate the merit 

of the compounding risk concept in terms of planning and investments for smart 

stormwater systems. The proposed compounding risk quantification method can be further 

applied to other network-based water systems, such as irrigation canal systems, multi-

reservoir systems, and water distribution systems. 
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5.1  Introduction 

Risk plays a vital role in decision-making processes, for example, infrastructure investment 

with limited resources (Depoy et al., 2005; IPCC, 2022). Traditionally, risks like flooding 

were evaluated based on a single type of natural hazards, such as heavy storms (Tung et 

al., 2019). However, the absence of a correlation analysis with other natural and human 

factors might lead to overestimating or underestimating the concerning risks (Hillier et al., 

2020). Recently, the compounding hazards concept has been proposed, where multiple 

natural hazards were considered in a risk evaluation (Bevacqua et al., 2021, Zscheischler 

et al., 2018). For instance, a stormwater system in a coastal city can be simultaneously 

impacted by heavy storms and sea level rises (Wahl et al., 2015). However, the 

compounding risks involving natural hazards and human interventions (e.g., cyber-attack) 

have not been well-studied (Xu et al., 2021), especially for their quantification methods.  

Proper stormwater management strategies are required to address corresponding 

flooding, pollution, and erosion issues in urban stormwater systems (Burian et al., 2002; 

Fletcher et al., 2015; Jongman, 2018; Ministry of the Environment, 2003). Natural-based 

solutions, e.g., detention ponds, are conventionally adopted with gravity-based passive 

control to detain runoffs and reduce peak outflows to prevent flooding and erosions (Huang 

et al., 2020; Van Meter et al., 2011). Namely, the outflows of ponds are controlled by the 

combinations of pond capacities, conduit sizes, and components’ relative invert elevations. 

Studies have tried to optimize the system over different combinations of the 

abovementioned ponds’ properties (Froise & Burges, 1978; Yeh & Labadi; 1997). 

However, passive stormwater systems (e.g., outflow gate openings are fixed) tend to be 

difficult (or costly) to expand and adapt to environmental changes like weather patterns 
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and land use once it is built (Shishegar et al., 2018). To improve a system’s flexibility and 

efficiency, real-time control (RTC) has the potential to enhance the utilization of existing 

infrastructures at a low cost, especially Internet-of-Thing (IoT) technologies, including 

sensors, actuators, and cloud-based data storage (Gaborit et al., 2013; Mullapudi et al., 

2020; Piro et al., 2019). For example, the peak outflow at a stormwater system outlet can 

be reduced by controlling outflows from upstream ponds in real-time using water level 

measurements and weather forecasts (Sadler et al., 2020; Shishegar et al., 2021; Wong and 

Kerkez, 2018). We called these IoT-based stormwater systems as smart stormwater 

systems (Bartos et al., 2018). 

However, those IoT technologies in RTC systems also introduce new cybersecurity 

issues (Kriaa et al., 2015; Shin et al., 2020; Yanakiev, 2020). Several cyber-attack incidents 

have been reported in various water systems, from water/wastewater treatment plants and 

pump stations to canal systems and reservoirs (Hassanzadeh et al., 2020; Tuptuk et al., 

2021). Recently, the US Federal government released a water sector action plan to expand 

public-private cybersecurity partnership (The White House, 2022), which further indicated 

the sincere concern about the cyber security issue in the water sector. With various forms 

of cyber-attacks, including device compromise, false alarms, denial of service, and data 

exfiltration (Dieu, 2001; Li and Liu, 2021; Lu and Reeves, 2014), this chapter focuses on 

“false data injection” (Mo et al., 2010), in which stealthy attackers inject false 

measurements into the supervisory control and data acquisition (SCADA) system without 

being detected. Then, those contaminated measurements bias the decisions (e.g., outflows 

of ponds) in RTC and possibly lead to physical damages to the system (e.g., flooding), thus 

called cyber-physical attacks. While the impact of false data injection (FDI) has been 
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studied in water distribution systems (Ahmed et al., 2017; Moazeni et al., 2021), irrigation 

canals (Amin et al., 2012; Amin et al., 2013), and water treatment plants (Kumar et al., 

2021), it has not yet been explored in IoT-based smart stormwater systems. 

Compared to the impact analysis of cyber intrusions, relatively few studies 

addressed the risk assessment in cyber-physical systems (Depoy et al., 2005) and the 

quantification of compounding risks (Yadav et al., 2020). Depoy et al. (2005) proposed a 

high-level cyber-physical system risk assessment framework considering physical and 

cyber security in large-scale critical infrastructures, e.g., water distribution systems. Later, 

the framework was developed into a computer program to assist the cyber-physical systems 

risk assessment (DePoy et al., 2006). However, this framework focused on human factors 

only (i.e., infrastructure vulnerability, attacks, and defending responses). It did not specify 

how to consider the interactions between natural and human factors (e.g., storms and FDI) 

in the assessment, where the growing threats of compounding disruptions by natural 

hazards and cyber-attack have been shown in a transportation system study (Yadav et al., 

2020). Based on the literature review, a knowledge gap emerges that new methods to 

quantify compounding risks seem necessary (Nurse et al., 2017). 

Therefore, this chapter aims to develop a compounding risks quantification method 

and demonstrate its utility in a smart stormwater system, where we consider storms and 

FDI in flooding risk evaluation. The three tasks of this chapter are (1) developing a 

mathematical framework for the compounding impact analysis, (2) demonstrating 

disclosure of potential FDI consequences in smart stormwater systems, and (3) quantifying 

the additional flooding risks caused by FDI while considering sensor noises and weather 

forecast uncertainties. Considering that smart stormwater systems have not yet been 
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prevalent in practice, this chapter serves as an initial step to discuss the compounding risk 

through a hypothetical case based on the real-world pond network layout to assist future 

system development.  

The article is structured as follows. Section 5.2  presents the methods used to 

achieve the abovementioned three tasks, and Section 5.3  introduces the study area and the 

experiment setup. Results are shown in Section 5.4 . A discussion of control system 

properties and model limitations is shown in Section 5.5 , followed by the Conclusions in 

Section 5.6 . 

5.2  Methods 

5.2.1  Mathematical Framework for Smart Stormwater Systems 

This chapter abstracts a smart stormwater system into a mathematical framework (Figure 

5-1) that consists of three components: (1) a stormwater (drainage) system representative, 

(2) an outflow control system, and (3) a bad data detector. The stormwater system is 

described by a linear state-space model that simulates the water balance and water level 

dynamics in a pond-conduit network. A time-invariant linear quadratic gaussian (LQG) 

controller is adopted to mimic the system control process that assimilates water level 

measurements into model estimates using the Kalman filter and yields outflow controls. A 

𝜒2 detector (Mo et al., 2010) is chosen to be a bad data detector representing the SCADA 

system that checks the quality of the sensor measurements before passing them to the LQG 

controller. We explain these three components in detail in the following sections. 
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Figure 5-1. A mathematical framework for smart stormwater systems consists of a 

stormwater (drainage) system representative, a control system, and a bad data detector. The 

red-colored variables indicate the polluted path to the outflow control (𝒖̂), where 𝒚′ is the 

contaminated measurements from FDI. 

 

5.2.1.1 State-Space Representation for the Pond-Conduit Network 

The stormwater system we considered is a network of ponds and conduits (Figure 5-1) that 

can be further abstracted into a node-link system, where nodes are storages (i.e., ponds) 

and links are the network topology (i.e., conduits). The state-space model (Equation 5-1) 

has been successfully adopted to simulate the water balance dynamics in such network-

based systems (Ahmed et al., 2017; Schuurmans, 1997; Wong and Kerkez, 2018). 

 𝒙𝒕 = 𝐴 ∙ 𝒙𝒕−𝟏 + 𝐵𝑢 ∙ 𝒖𝒕−𝟏 + 𝐵𝑤 ∙ 𝒘𝒕−𝟏 (5-1) 

 𝒚𝒕
𝒔𝒊𝒎 = 𝐶 ∙ 𝒙𝒕                                                       (5-2) 

where 𝒙𝒕  [cm] is a vector of states to represent the water level in ponds and the flow 

quantities in segments of a conduit. The flow quantities are represented by the water level 

change of the source pond. The term 𝒖𝒕−𝟏 [cm] is a vector of pond outflows represented 

by the water level change of the source pond, and 𝒘𝒕−𝟏  [cm] is a vector of runoffs 

represented by the water level change of the destination pond. The subscript 𝑡 ∈ 𝒯 =

{1,2, … , 𝑇}  denote the time step in a discrete simulation system, where 𝒯  is a set of 
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simulation time steps, and 𝑇 is the number of time steps in a simulation. The coefficients 

𝐴, 𝐵𝑢, and 𝐵𝑤  are state, control, and disturbance matrixes, respectively, abstracting the 

topology of network and unit/scale conversion. Matrix 𝐴  is a square matrix with a 

dimension equal to the number of states in 𝒙𝒕. The diagonal elements corresponding to 

water level states have the value one; otherwise, zero. The off-diagonal non-zero elements 

represent the routing process in conduits. Those non-zero elements have the value 

𝑎𝑠,source

𝑛𝑐∙𝑎𝑠,destination
, where 𝑛𝑐 is the number of segments in a conduct 𝑐 and 

𝑎𝑠,source

𝑎𝑠,destination
 is the 

ratio of source pond area and destination pond area. Matrix 𝐵𝑢 has the dimension of the 

number of states in 𝒙𝒕 times the number of ponds. In the matrix 𝐵𝑢, pond-to-conduit-inlet 

elements have the value of one, and conduit-outlet-to-pond elements have the value of 

negative one; otherwise, zero. Matrix 𝐵𝑤 has the same dimension as 𝐵𝑢. The only non-zero 

elements are those linking sub-catchment runoff to pond elements, which have the value 

of one. We expand Equation 5-1 and illustrate the water level dynamics of Pond 1 in a two-

pond system (Figure 5-1) in Equation 5-3. 

 𝑥1,𝑡 
𝑤𝑙 = 𝑥1,𝑡−1 

𝑤𝑙 +
𝑎𝑠,2

𝑛𝑐2𝑎𝑠,1
(𝑥𝑐2,1,𝑡−1
nc + 𝑥𝑐2,2,𝑡−1

nc )
⏞                

Conduit inflow from Pond 2

+ 𝑢1,𝑡−1⏞  
Outflow 

+ 𝑤1,𝑡−1⏞  
Runoff

⏟                            
Water level change of Pond 1 from different sources

 (5-3) 

where 𝑥𝑤𝑙 is pond water level states, and 𝑥𝑐,𝑠
𝑛𝑐 is the water quantity state of segment 𝑠 in a 

conduct 𝑐. The dynamic of the water level in a pond is equal to the water level at the 

previous time step (the first term) plus the water level changes resulting from the conduit 

inflows of the upstream ponds (the second term), the pond’s outflow (the third term), and 

the runoffs (the fourth term) generated from its sub-catchments. The output matrix (𝐶) in 

Equation 5-2 collects the simulated water level (𝒚𝒕
𝒔𝒊𝒎 [cm]) information from 𝒙𝒕, which 

contains water level states and water quantity states of conduit segments. Matrix 𝐶 has the 
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dimension of the number of ponds times the number of states in 𝒙𝒕. We provide a more 

thorough example with a three-pond system in the supporting information (Appendix D.1) 

to demonstrate the construction of a state-space model from a given pond-conduit network. 

 The sensor measurements of water levels (𝒚𝒕 [cm]) are expressed in Equation 5-4. 

 𝒚𝒕 = Γ𝑡
h ∙ (𝒚𝒕

𝒔𝒊𝒎 + 𝒗𝒕) + Γ𝑡
𝑎 ∙ 𝒚𝒕

𝒂 (5-4) 

where Γℎ and Γ𝑎 are indicator matrixes (i.e., 0 or 1) showing the time steps and sensors 

that are healthy or being attacked (i.e., FDI), respectively. The term 𝒗𝒕 [cm] is a vector of 

the Gaussian sensor white noise and 𝒚𝒕
𝒂 [cm] is a vector of the false data injected by an 

attacker at time step 𝑡.  

5.2.1.2 LQG Controller for System Operation 

The second component of the proposed framework is the LQG controller. The LQG 

controller consists of a linear quadratic estimator (LQE) and a linear quadratic regulator 

(LQR). LQE outputs the estimates of future states ( 𝒙̂𝒕  [cm]) by assimilating model 

predictions (𝒚̂ [cm]) and water level measurements through a Kalman filter as shown below: 

 𝒙̂𝒕 = 𝐴 ∙ 𝒙̂𝒕−𝟏 + 𝐵𝑢 ∙ 𝒖𝒕−𝟏 + 𝐵𝑤 ∙ 𝒘𝒕−𝟏 + 𝐿 ∙ 𝒛𝒕−𝟏 (5-5) 

 𝒛𝒕 = 𝒚𝒕 − 𝒚̂𝒕                                                                  (5-6) 

 𝒚̂𝒕 = 𝐶 ∙ 𝒙̂𝒕                                                                      (5-7)  

In LQE (Equation 5-7), we adopt the same state-space model (Equations 5-1 and 5-2) as 

the prediction model. The term 𝐿 is the Kalman gain, a coefficient matrix to adjust the 

current prediction using the differences between predictions and measurements at the 

previous time step (𝒛𝒕−𝟏 [cm]; Equation 5-6). The Kalman gain is determined based on the 

level of sensor noises and the weather forecast uncertainty. The value of 𝐿 is closer to 1 

when sensor noises are smaller than the forecast uncertainty ( 𝒙̂𝑡  relies more on the 
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measurements). In the opposite situation, 𝐿 is closer to 0 (𝒙̂𝒕 depends more on the model 

prediction). We show the calculation for 𝐿 in (Appendix D.2). 

LQR is a closed-loop feedback control method (Mo et al., 2010) that will use 𝒙̂𝒕 

from LQE to determine the optimal control based on an overall objective function 

(Equation 5-8; 𝐽 [cm2]): 

 𝐽 = 𝒙̂𝑻
T𝑄𝒙̂𝑻 + ∑ (𝒙̂𝒕

T𝑄𝒙̂𝒕 + 𝒖̂𝒕
T𝑅𝒖̂𝒕)

𝑇−1
𝑡=1    (5-8) 

where 𝑇 is the total time step, 𝑄 is a weight matrix for the control error (e.g., deviation of 

desired water level), and 𝑅 is a weight matrix for the control cost (e.g., power consumption 

of gate controllers). The term 𝒙̂𝑻
T𝑄𝒙̂𝑻 is the control error at the terminal step. The analytical 

solution of this linear optimization problem to minimize 𝐽 is  𝒖̂𝒕 = −𝐾𝒙̂𝒕, where 𝒖̂𝒕 is the 

optimal control at the time step 𝑡, and 𝐾 is the feedback gain matrix solved by the Riccati 

equation (Kučera, 1973). In addition to the information derived from past measurements 

(i.e., 𝒙𝒕), we further adopt future information, which is future desired water levels (𝓻𝒕 [cm]) 

and forecasted runoffs (𝒘̃𝒕 [cm]), to adjust the outflow control (𝒖̂𝑡 [cm]): 

 𝒖̂𝒕 = −𝐾 ∙ 𝒙̂𝒕 + 𝐾𝑟 ∙ 𝓻𝒕 + 𝐾𝑤 ∙ 𝒘̃𝒕 (5-9) 

where 𝐾𝑟  and 𝐾𝑤  are two corresponding feedforward gain matrixes for 𝓻𝒕  and 𝒘̃𝒕 , 

respectively. For example, if the system foresees a large incoming runoff or a decrease in 

desired water levels (i.e., control target), outflow control (𝒖̂𝒕) will be enlarged. We provide 

the detailed derivation of 𝐾, 𝐾𝑟, and 𝐾𝑤 in Appendix D.2. 

 The actual controllable outflows (defined as a negative value), however, are limited 

to the available water in ponds (𝒖𝒕
𝒂𝒘 [cm]) and the physical properties of gravity-driven 

outflows (𝒖𝒕
𝒖𝒄 [cm]; assuming no pumps were installed) as shown in Equation 5-10. 

 𝒖𝒕 = max(𝑚𝑖𝑛(0, 𝒖̂𝒕) , −𝒖𝒕
𝒂𝒘, −𝒖𝒕

𝒖𝒄 ) (5-10) 
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 𝒖𝒕
𝒂𝒘 = 𝒚𝒕

𝒔𝒊𝒎                                                      (5-11) 

 𝒖𝒕
𝒖𝒄 = 𝒄𝒈 × 𝝁 × 𝒂𝒈 ×√2𝑔𝒚𝒕

𝒂𝒄𝒕 × (
𝑑𝑡

𝒂𝒔
)    (5-12) 

 𝒚𝒕
𝒂𝒄𝒕 = min(𝒚𝒎𝒂𝒙, 𝑚𝑎𝑥(0, 𝒚𝒕

𝒔𝒊𝒎))               (5-13) 

The available water in ponds (𝒖𝒕
𝒂𝒘 ) is equal to 𝒚𝒕

𝒔𝒊𝒎  (Equation 5-11). The maximum 

gravity-driven outflows (𝒖𝒕
𝒖𝒄 ) is computed under the assumption of full pipe flow 

(Equation 5-12), where 𝒄𝒈  is a calibrated gate coefficient, 𝝁  is the coefficient of 

contraction (often set to 0.65;  Rossman, 2010), 𝒂𝒈  is the cross-section area of the 

maximum gate opening (e.g., orifice), 𝑔 is gravitational acceleration, and the actual water 

level in a pond (𝒚𝒕
𝒂𝒄𝒕 [cm]; Equation 5-13) is bounded between 0 (i.e., no negative water 

level) and the maximum depth of ponds (𝒚𝒕
𝒎𝒂𝒙 [cm]). The term 

𝑑𝑡

𝒂𝒔
 converts the unit from 

flow rate to the water level change of ponds, where 𝑑𝑡 is the simulation time interval and 

𝒂𝒔 is a vector of the surface area of ponds, a function of 𝒚𝒕
𝒂𝒄𝒕. 

5.2.1.3 Bad Data Detector 

This chapter adopted a 𝜒2 detector (Mo et al., 2010) as a bad data detector in Equation 5-

14.  

 𝐸𝑟𝑟𝑡 = 𝒛𝒕
T ∙ 𝒢−1 ∙ 𝒛𝒕  ≤ 𝜀 (5-14) 

where 𝒛𝑡 is a vector of the water level differences between predictions and measurements 

at the time step 𝑡 as shown in Equation 5-6, 𝒢  is a sensor weight matrix, and 𝜀  is an 

operator-selected threshold for measured errors tolerance (see the next section). We further 

denote 𝒛𝒕
𝑇 ∙ 𝒢−1 ∙ 𝒛𝒕 as 𝐸𝑟𝑟𝑡 [cm2], which can be interpreted as the sum of weighted squared 

independent and identically distributed Gaussian sensor noises (i.e., inter-product of 𝒛𝒕) 
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such that 𝐸𝑟𝑟𝑡 is a 𝜒2 distribution with a degree of freedom equal to the number of water 

level sensors.  

5.2.2  Compounding Impact Evaluation 

5.2.2.1 Operation and FDI Strategies 

 

Figure 5-2. 𝜒2  distributions for operator (yellow lines) and attacker (blue lines) to 

determine corresponding thresholds, 𝜀 and 𝜀𝑎, based on their operation and attack strategy. 

The attackable range (𝐸𝑟𝑟𝑎) decreases as the number of attacking time steps (𝑇𝑎) increases.  

 

This chapter evaluates compounding impact and quantifies compounding risk given a set 

of operations (e.g., outflow control rules; from the operator’s perspective) and FDI 

strategies (e.g., the number of attacking sensors and time steps; from the attacker’s 

perspective). The operation strategy (𝒪) and FDI strategy (𝒜) in a smart stormwater 

system (𝒩) are defined as: 

 {

𝒩 = {𝐴, 𝐵𝑢, 𝐵𝑤, 𝐶, ℊ, 𝐿, 𝐾, 𝐾𝑟 , 𝐾𝑤}

𝒪 = {ℛ, 𝑝},                                       

𝒜 = {𝛤𝑎, 𝑝𝑎}                                     

 (5-15) 



111 

 

where 𝑝 is the designed probability that the detector alarm will not be triggered in a healthy 

system during a storm event, and 𝑝𝑎 is the designed probability of a successful FDI given 

attacking sensors and time steps (𝛤𝑎) in a storm event. Next, we convert 𝑝 and 𝑝𝑎 into the 

corresponding single time step thresholds for an operator threshold (𝜀) and an attacker 

threshold (𝜀𝑎) in Equation 5-16. 

 {
𝜀 = 𝜒𝑑𝑜𝑓=𝑛

2 −1
(𝑝1 𝑇⁄ ),            

𝜀𝑎 = 𝜒𝑑𝑜𝑓=𝑛−𝑛𝑎
2 −1

((𝑝𝑎)1 𝑇⁄
𝑎

)
 (5-16) 

where 𝑇 is the total control time steps, 𝑛 is the number of sensors, 𝑇𝑎 is the total attacking 

time steps, and 𝑛𝑎  is the number of attacking sensors. Degree of freedom of a 𝜒2 

distribution is denoted as 𝑑𝑜𝑓. The difference between 𝜀 and 𝜀𝑎 is defined as an attackable 

range (𝐸𝑟𝑟𝑎 [cm2]). Figure 5-2 visualizes the concept of 𝜀 (yellow lines) and 𝜀𝑎 (blue lines) 

and indicates 𝐸𝑟𝑟𝑎  with different 𝑇𝑎  (𝑑𝑡 is equal to 1 minute in Figure 5-2). From the 

operator’s viewpoint, if 𝑝 is set too large, it gives attacker wider 𝐸𝑟𝑟𝑎; however, if 𝑝 is set 

too low, the operator might be overwhelmed by false alarms. From the attacker’s viewpoint, 

if 𝑝𝑎  is set too large, decreased 𝐸𝑟𝑟𝑎  might limit the goal which is to flood a pond; 

however, if 𝑝𝑎  is set too low, there is a higher chance the attack will be detected and 

blocked. Being detected might also trigger the system upgrade against future attacks that 

an attacker wants to avoid.  

5.2.2.2 Solving FDI with Optimization 

To evaluate the compounding impacts of FDI given operation (𝒪) and attacking (𝒜) 

strategies, we solve the injected false data ( 𝒚𝒕
𝒂  [cm]) by formulating the proposed 

mathematical framework into a deterministic mixed-integer quadratically-constrained 

programming (MIQCP) problem. We assume a stealthy attacker who only targets to flood 
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one pond (𝑠target) and is well-acknowledged about the stormwater system (𝒩) and the 

operation strategy (𝒪). Hence, the attacker’s objective function in this MIQCP problem is: 

 𝑂𝑏𝑗 = 𝑀𝑎𝑥 {∑𝑦𝑠target,𝑡
𝑠𝑖𝑚 } (5-17) 

which is subjected to Equations 5-1 to 5-13 (except Equations 5-3 and 5-8), Equation 5-18, 

and Equation 5-19 with no sensor noises (𝒗𝒕 = 0) as 𝐸[𝒗𝒕] = 0 and a perfect weather 

forecast (𝒘̃𝒕 = 𝒘𝒕).  

 𝒛𝒕
T ∙ 𝒢−1 ∙ 𝒛𝒕 ≤ 𝐸𝑟𝑟

𝑎 (5-18) 

 𝒙𝐭𝐬 = 𝒙𝐭𝐬 = 𝒙𝐭𝐬
𝒉 , 𝒖𝐭𝐬 = 𝒖𝐭𝐬

𝒉 , 𝑡 ∈ 𝒯a = {𝑡𝑠 + 1, 𝑡𝑠 + 2,… , 𝑡𝑠 + 𝑇
𝑎}  (5-19) 

We substitute the bad data detector (Equation 5-14) with Equation 5-18 since the only 

source of 𝒛𝒕 is 𝒚𝒕
𝒂 in a deterministic setup. The adoption of 𝐸𝑟𝑟𝑎 is to ensure the successful 

FDI rate is at least 𝑝𝑎 (i.e., rate of not being detected). Since we only need to solve 𝒚𝒕
𝒂 for 

the time steps having FDI, the initial values of this MIQCP problem (i.e., 𝒙𝐭𝐬, 𝒙̂𝐭𝐬, and 𝒖𝐭𝐬) 

are equal to the values in a healthy system at the time 𝑡𝑠 (i.e., 𝒙𝐭𝐬
𝒉  and 𝒖𝐭𝐬

𝒉 ; Equation 5-19). 

We show a complete MIQCP problem in Appendix D.3. 
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5.2.2.3 Consequences of FDI 

 

Figure 5-3. Disclosure of potential FDI consequences with Pond 1 as the flooding target. 

(a) A smart stormwater system with three ponds. (b) Water level impact of Pond 1 from 

enlarging inflow caused by FDI. (c) Water level impact of Pond 1 from reducing outflow 

caused by FDI. (d) The water level time series of Pond 1 under “uncontrolled,” “controlled,” 

and “FDI” scenarios. 

 

Two potential FDI consequences are demonstrated in Figure 5-3 as a simple three-pond 

stormwater system where Pond 1 is under attack. The first type of FDI impact is the attacker 

can potentially aggregate the peak outflows of upstream ponds with peak runoffs to 

manually form a peak inflow of Pond 1 larger than the uncontrolled and controlled 

scenarios (Figure 5-3b). The second type of FDI impact is to attack the Pond 1 sensor and 

maliciously reduce its outflow, as shown in Figure 5-3c. Both attacking strategies can 

increase the water level in Pond 1. An attacker can also combine those two strategies, as 

shown in Figure 5-3d. Figure 5-3d indicates a higher water level peak with the FDI-to-all-

sensors scenario compared to uncontrolled and controlled scenarios. Such water level rise 
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means a lower tolerance toward control errors from sensor noises and weather forecast 

uncertainties, resulting in higher flooding risk. In Figure 5-3d, the water level in the FDI 

scenario exceeds the maximum pond capacity, where Pond 1 is flooded.  

5.2.3  Compounding Risk Quantification 

In addition to the compounding impacts solving in a deterministic formulation (Section 

2.2), we propose a method to quantify the compounding risks of flooding under Gaussian 

sensor white noises and weather forecast uncertainties in this section. Given a smart 

stormwater system (𝒩), the level of sensor noises (𝝈𝒔), weather forecast uncertainty (𝝈𝒘), 

an attacking strategy (𝒜), an operation strategy (𝒪) and 𝑡 ∈ 𝒯𝑎, the compounding risks 

can be quantified by Equation 5-20. 

 𝑃𝑐(𝐹𝑠)⏟  
𝑃𝑐
𝑠

= 𝑃(𝐸)⏟  
𝑃𝐸

× 𝑃(𝒛𝒕
T ∙ 𝒢−1 ∙ 𝒛𝒕 ≤ 𝜀|𝒚

𝒂)⏟              
𝑃𝐹𝐷𝐼

× [1 − 𝑃(𝑑𝑦𝑠,𝑡
𝑓
≤ (𝑦𝑠

𝑚𝑎𝑥 − 𝑦𝑠,𝑡
𝑠𝑖𝑚,𝑎)|𝒚𝒂)]⏟                        

𝑃𝑊
𝑠

(5-20) 

where 𝑃𝑐
𝑠 = 𝑃𝑐(𝐹𝑠) is the compounding risk of pond 𝑠 getting flooded in 𝒯𝑎, in which 𝐹𝑠 

is an indicator variable (value “1” if pond 𝑠 is flooded). The occurrence probability of 

storm 𝐸  is 𝑃𝐸 = 𝑃(𝐸) (i.e., the return period). The successful FDI rate (i.e., not being 

detected) given 𝒚𝒂  is 𝑃𝐹𝐷𝐼 = 𝑃(𝒛𝒕
T ∙ 𝒢−1 ∙ 𝒛𝒕 ≤ 𝜀|𝒚

𝒂) . The injected false data (𝒚𝒂 ) is 

solved by optimization introduced in Section 2.2. 𝑃𝑊
𝑠 = [1 −

𝑃(𝑑𝑦𝑠,𝑡
𝑓
≤ (𝑦𝑠

𝑚𝑎𝑥 − 𝑦𝑠,𝑡
𝑠𝑖𝑚,𝑎)|𝒚𝒂)] is the flooding probability of pond 𝑠  under the water 

level control errors (𝑑𝑦𝑠,𝑡
𝑓

 [cm]) caused by forecast errors given 𝒚𝒂. The simulated water 

levels given 𝒚𝒂  is denoted as 𝑦𝑠,𝑡
𝑠𝑖𝑚,𝑎

, and 𝑦𝑠
𝑚𝑎𝑥  is the maximum depth of pond 𝑠 . To 

evaluate those three terms, the storm occurrence probability (𝑃𝐸) can be estimated from 

frequency analysis, such as a depth–duration–frequency (DDF) curve (Figure 5-4a). The 

successful FDI rate (𝑃𝐹𝐷𝐼) is calculated by multiplying the blue area under the shifted 
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𝜒𝑑𝑜𝑓=𝑛−𝑛𝑎
2  distribution over every time step in 𝒯𝑎 (Figure 5-4b), where the shift is equal 

to 𝐸𝑟𝑟𝑡 = 𝑧𝑡
T ∙ 𝒢−1 ∙ 𝑧𝑡  from Equation 5-14. The flooding probability under sensor noises 

and forecast uncertainties (𝑃𝑊
𝑠 ) is estimated by Monte Carlo simulations, in which 1000 

realization sets of sensor noises and forecasted runoffs were generated to evaluate the water 

level variations given 𝑦𝑎 . For example, even the water level under one single FDI 

experiment in a deterministic system (orange line in Figure 5-4c) does not overflow the 

pond, some realizations of sensor noises and forecast uncertainties might result in floods 

(some grey lines are over 100% pond’s capacity in Figure 5-4c), where the brown dashed 

line references the water level in the controlled scenario. Then, 𝑃𝑊
𝑠  is computed by the 

number of flooded realizations to the total number of realizations. Finally, 𝑃𝑐
𝑠 is quantified 

by multiplying 𝑃𝐸, 𝑃𝐹𝐷𝐼, and 𝑃𝑊
𝑠  together. 
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Figure 5-4. Probability estimation concepts for (a) 𝑃𝐸, (b) 𝑃𝐹𝐷𝐼, and (c) 𝑃𝑊
𝑠 , where 𝑃𝐸 is 

estimated by DDF curve, 𝑃𝐹𝐷𝐼 (blue area) is calculated from 𝜒𝑑𝑜𝑓=𝑛−𝑛𝑎
2  distribution, and 

𝑃𝑊
𝑠  is computed by Monte Carlo simulations over realizations of sensor noises and 

forecasted runoffs (grey lines). 

 

5.3  Materials 

5.3.1  Study Area 

A designed stormwater system (Figure 5-5) with a nine-pond network layout referenced 

from a residential area in Bethlehem township, PA, US, is adopted in this chapter. The total 

basin area is 0.81 km2. The ponds are radically connected to Pond 1 with circular conduits, 

where Pond 1 is the system outlet that outflows to Nancy Run Creek. We designed the 

stormwater system with US EPA’s Storm Water Management Model (SWMM; Rossman, 

2010) to have all pond outflows below 1.4 m3/s under a 2-year-24-hour design storm 

(Figure D1) and all pond water levels below 85% of their storage capacities under 25-year-

24-hour design storm (Figure D2) in a passive control scenario (i.e., uncontrolled) since 
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the designed system tend to reduce outflow peak while guaranteeing to accommodate 25-

year-24-hour design storm without flooding. The synthetic design storms are based on the 

standard 24-hour NRCS type II rainfall distribution (NRCS, 2004) with a DDF curve from 

NOAA Atlas 14 Volume 2 Version 3 (Bonnin et al., 2004). This chapter only considers 24-

hour storms. For simplicity, all storms mentioned in the content below are 24-hour 

designed storms. Without losing the generality, the ponds are set to be rectangular, in which 

the pond’s surface area (𝒂𝒔) is a fixed value over depth. A square orifice is located at the 

bottom of each pond, and each pond has its invert elevation higher than the overflow 

heights of all downstream ponds to satisfy the gravity-driven outflow assumption 

(Equation 5-12). The detailed configurations of this design stormwater system, such as 

pond capacities, conduit lengths, orifice sizes, and invert elevations, are provided in Table 

D1. For a “smart” stormwater system, there are a water level sensor and an outflow gate 

actuator at each pond, communicating with a SCADA center. 

 

Figure 5-5. A designed stormwater system with the network layout referenced from a 

residential area in Bethlehem township, PA, US. Ponds’ capacities are indicated by circle 

size in a log scale. 
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5.3.2  Numerical Experiment Setup 

Our numerical experiment considers three scenarios: (1) uncontrolled, (2) controlled, and 

(3) FDI associated with the controlled system. We translate the pond-conduit network 

(Figure 5-5) into 𝐴, 𝐵𝑢, 𝐵𝑤, and 𝐶 matrixes to establish a state-space model with discretized 

time step equal to 1-minute. First, for the uncontrolled scenario, we calibrate the number 

of segments (𝑛𝑐 ) and gate coefficient ( 𝒄𝒈 ) with the SWMM-simulated data in the 

uncontrolled scenario, where pond outflows are governed by: 

 𝒖𝒕 = max(−𝒖𝒕
𝒂𝒘, −𝒖𝒕

𝒖𝒄 ) (5-21) 

For 𝑛𝑐, we search in [1, 4] from upstream to downstream to minimize the mean Root Mean 

Square Error (RMSE) of SWMM-simulated water levels under 2-year and 25-year storms 

(𝑅𝑀𝑆𝐸𝑛𝑐). Then, we manually tune 𝒄𝒈 to minimize the mean RMSE of SWMM-simulated 

water levels and pond outflows under 2-year and 25-year storms (𝑅𝑀𝑆𝐸𝐶𝑔).  

 After that, we designed a simple control rule of desired water level (𝓻𝒕) for the 

controlled scenario, where the control philosophy is to detain runoffs in ponds by 

maintaining the water level at 80% pond capacity for five hours before decreasing. The 

control rule is visualized in Figure 5-6, where the two control time points 𝑡5% and 𝑡𝑝 are 

determined by the simulated water level in the uncontrolled scenario. The term 𝑡5% is the 

time step that the simulated water level reaches 5% pond capacity and 𝑡𝑝 is the time step 

when simulated water level reaches the peak. The idea is to gradually accumulate water to 

80% of the pond’s capacity during the water level rising period, defined as 𝑡5% to 𝑡𝑝. This 

control rule is applied to Pond 2 to 9, but Pond 1 (system outlet) is designed to drain the 

water with the maximum physical capacity (Equation 5-21; i.e., desired water level is zero) 

for the safety issue. To achieve a better controlling result, 𝑅 and 𝑄 in Equation 5-8 are 
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tuned to satisfy the control need (Appendix D.2). Note that searching for an optimal control 

rule is out of the scope of this chapter.  

 

 

Figure 5-6. A control rule for desired water level (𝓻𝒕). 𝑡5% (cross) and 𝑡𝑝 (star) are two 

control time points determined by the simulated water level reaching 5% pond capacity 

and the peak under an uncontrolled scenario. The desired water level linearly increases 

from 0 to 80% pond capacity and maintains for five hours before decreasing. 

  

 Last, for FDI scenarios, we consider (1) attacking only the sensor at the targeted 

pond (𝐹𝐷𝐼𝑆) and (2) attacking multiple sensors at the targeted pond and its upstream ponds 

(𝐹𝐷𝐼𝑀) with different attacking lengths from 5 minutes to 60 minutes. The value for 𝑝 and 

𝑝𝑎 in Equation 5-16 are set to be 0.95 and 0.99, respectively. We design the attack starting 

at 𝑡𝑝, in which each pond has a different attacking start time step. Also, to avoid solving a 

large-scale optimization problem and potential numerical issues, the MIQCP (Section 2.2.2) 

problem was sequentially solved every 5 minutes. For instance, the 60-minute-FDI 

problem is split into 12 subproblems. 

For the Monte Carlo simulations (i.e., 𝑃𝑊
𝑠  estimation), we generate 1000 realizations of 

sensor noises and forecasted runoffs (i.e., {𝒗𝒕, 𝒘̃𝒕; 𝑡 ∈ 𝒯}). We sampled sensor noises from 
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a Gaussian distribution with zero mean and standard deviation (𝝈𝒔 [cm]) equal to 0.25 

(MaxBotix MB7384, 2012) and synthesize forecasted runoffs through a multiplicative 

error model that is commonly used in radar forecast literature (Schleiss et al., 2020): 

 𝒘𝒕 = 𝛽 × 𝒘̃𝒕 × 𝜺𝒘 (5-22) 

where 𝛽  is set to 1 and 𝜺𝒘  is a vector of random numbers sampled from a lognormal 

distribution with a median of 1 and a standard deviation equal to 0.9 (Schleiss et al., 2020). 

Since we assume a time-invariant LQG control system (i.e., 𝐾 , 𝐾𝑤  and 𝐾𝑟  are fixed 

constant over a storm event), the standard deviation of 𝜺𝒘 (𝝈𝒘 [cm]) was estimated by 

averaging the standard deviation calculated at each time step for each pond. We simulate 

runoffs (𝒘𝒕) by the SWMM model with storms that have different return periods, i.e., 1, 2, 

5, 10, 25, 50, 100, and 200 years. 

5.4  Results 

5.4.1  Water Levels under Uncontrolled, Controlled, and FDI scenarios 

To evaluate compounding risks, the first step is to understand the impact of FDI given a 

design storm. We first calibrate the state-space model, where 𝑅𝑀𝑆𝐸𝑛𝑐  and 𝑅𝑀𝑆𝐸𝐶𝑔  are 

equal to 4.49 cm and 2.30 cm, respectively, to compare the water level dynamics in 

uncontrolled and controlled scenarios. Then, we calculate the water levels under 𝐹𝐷𝐼𝑆 and 

𝐹𝐷𝐼𝑀  by solving MIQCP problems. Figure 5-7 shows the water level comparisons of 

uncontrolled (dotted blue line), controlled (dashed brown line), 𝐹𝐷𝐼𝑆 (orange line), and 

𝐹𝐷𝐼𝑀 (green line) with 25-year storm and 30-minute attack. Each plot is one independent 

experiment showing a specific pond is under attack. The nested stem plots indicate relative 

maximum water level differences between controlled and two FDI scenarios of nine ponds 

in that experiment.  
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In the control scenario, we detain the water in the pond for 5 hours to reduce the 

peak outflow, where most ponds’ peak outflows reduce (-0.006 to -0.218 m3/s) except Pond 

8 (+0.001 m3/s). Among them, Pond 1 has the maximum reduction (-0.218 m3/s). This 

reduction is also reflected in its lower water level in the controlled scenario (Figure 5-7). 

Since the desired water level of Pond 1 is set to zero, Pond 1 always has the maximum 

possible outflow; hence, a lower water level means a lower outflow. These results agree 

with previous smart stormwater system studies (Wong and Kerkez, 2018) that actively 

controlling a stormwater system is likely to enhance the utilization of existing 

infrastructures and accommodate larger storms with lower erosion impact at the 

downstream area (lower peak outflow). 

However, the results of 𝐹𝐷𝐼𝑆 show that it is possible to cause floods in a smart 

stormwater system through cyber-attack. In Figure 5-7, Ponds 2, 4, 5, and 6 are flooded 

(subtitle with *) if they are attacked. We test 𝐹𝐷𝐼𝑀 scenario with the targeted pond, which 

has inflows from upstream ponds, namely Ponds 1, 3, 6, and 7. In Pond 1, FDI has a limited 

effect on reducing Pond 1’s outflow gate opening. However, the water levels are slightly 

higher in 𝐹𝐷𝐼𝑀  than 𝐹𝐷𝐼𝑆  because of the larger inflows from upstream ponds (this is 

indicated by the lower peak water levels in the stem plot since water is released 

downstream). Such a phenomenon can also be observed in Pond 3, where the green dot is 

lower at Pond 3’s upstream pond (i.e., Pond 4). In Ponds 6 and 7, their inflows are not 

vastly increased; however, water levels in 𝐹𝐷𝐼𝑀 are higher than 𝐹𝐷𝐼𝑆. These are the results 

from the wider attackable range (𝐸𝑟𝑟𝑎) due to attacking multiple sensors (i.e., lower 𝑑𝑜𝑓 

in 𝜒2 distribution; Equation 5-16). In Pond 8’s stem plot, we found its downstream pond, 

Pond 7, has the largest increased peak water level. This is because contaminated Pond 8’s 
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measurements also affect Pond 7’s outflow control. In other words, Pond 7 is convinced 

that no large inflow from the upstream pond, hence, reduces its outflow. From Figure 5-7, 

we observed that the difference between 𝐹𝐷𝐼𝑀 and 𝐹𝐷𝐼𝑆 are mild (Section 2.2.3) in our 

case, thus, we only consider 𝐹𝐷𝐼𝑆 for the following experiments.  

 

 

Figure 5-7. Water level comparisons of uncontrolled (dotted blue line), controlled (dashed 

brown line), 𝐹𝐷𝐼𝑆 (orange line), and 𝐹𝐷𝐼𝑀 (green line) with 25-year storm and 30-minute 

attack. The nested stem plots indicate relative maximum water level differences between 

controlled and two FDI scenarios of nine ponds. The star signs in the subtitle indicate the 

flooded ponds under FDI. The pond-conduit network is visualized in the upper left corner.  

 

5.4.2  Flooding Risks under Sensor Noises, Forecast Uncertainties, and FDI 

In this section, we further consider the impact of sensor noises and forecast uncertainties 

(i.e.,  {𝒗𝒕, 𝒘̃𝒕; 𝑡 ∈ 𝒯}) on flooding risks via Monte Carlo simulations. Figure 5-8 has a 
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similar layout as Figure 5-7; however, the nested plots are the magnified section for 

attacking periods, and the percentage of 1000 realizations (grey lines) that is flooded (𝑃𝑊
𝑠 ) 

is shown in the subtitle. In Ponds 4 and 6, all realizations have flood occur with or without 

sensor noises and forecast uncertainties. In Ponds 2 and 5, the percentage of floods is not 

100% (𝑃𝑊
2  = 93.3% and 𝑃𝑊

5  = 99.8%) compared to the deterministic scenario (Figure 5-7). 

A possible reason is that some realizations with overestimated runoff forecasts 

unintentionally neutralize the effect of FDI. While the results might look like sensor noises 

and forecast uncertainties reduce the flooding risk, over 90% flooding probability is still 

quite high. On the opposite side, the effect of sensor noises and forecast uncertainties can 

increase the flooding probability of Ponds 7 and 9 (𝑃𝑊
7  = 1% and 𝑃𝑊

9  = 38.5%) compare to 

the deterministic scenario. In sum, when we consider the effect of sensor noises and 

forecast uncertainties, the overall flooding risks in our case study (i.e., the number of ponds 

being flooded) increase.  
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Figure 5-8. Water level variations under sensor noises and forecasted runoffs with a 25-

year storm. Water levels in uncontrolled, controlled, and 𝐹𝐷𝐼𝑆  scenarios are shown in 

dotted blue lines, dashed brown lines, and solid orange lines, respectively. Each plot is one 

independent experiment differing in attacking targets. The pond-conduit network is 

visualized in the upper left corner. 

 

5.4.3  Compounding Flooding Risks 

With the information from Figure 5-8, we can compute the compounding flooding risk 

using Equation 5-20. Take Pond 9 as an example, 𝑃𝐸 is one over twenty-five (0.04) for the 

25-year designed storm, The successful FDI rate (𝑃𝐹𝐷𝐼) is equal to designed successful FDI 

rate (𝑝𝑎 = 0.99) in this particular case since the attacker use all attackable range at each 

attacking time step (𝐸𝑟𝑟𝑡 = 𝐸𝑟𝑟
𝑎  for 𝑡 ∈ 𝑇𝑎 ). Next, 𝑃𝑊

9  is 0.385 as we shown in the 

previous section. Finally, we can obtain the compounding risk 𝑃𝑐
9 = 0.04 × 0.99 ×

0.385 = 0.015.  
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 Following this qualification procedure, Figure 5-9 shows a heatmap of 

compounding risks over different consecutive attacking lengths (𝑇𝑎) and return periods of 

design storms. Grey color indicates zero in compounding risk of flood, and each plot is one 

independent experiment differing in attacking targets of 𝐹𝐷𝐼𝑠 scenario. Ponds 1, 3, and 8 

have relatively low compounding risks. The compounding risks of Ponds 1 and 3 only 

occur with 100- and 200-year return period storms, implying the flooding risks are 

dominated by the natural factor (i.e., the intensity of storms). Pond 8 is the most upstream 

pond with large storage compared to its relatively small sub-catchments. As a result, FDI 

has a limited effect on increasing the water levels in these three ponds. On the contrary, the 

pattern of compounding risks is considerably influenced by FDI in other ponds. In general, 

compounding risks grow more prominent with longer attacking time (increasing 𝑇𝑎) and 

gradually decrease with increasing return periods due to the reducing 𝑃𝐸 . Namely, 

compounding risks are higher with smaller storms. However, the highest compounding risk 

does not always appear in the lower right corner of each plot in our case. For example, 

Ponds 2 and 7 have the highest flooding risk in 2-year and 5-year return period storms, 

respectively. These point out different defending strategies' needs. For example, we can 

apply a lower desired water level for those high-compounding-risk storms to support larger 

control error tolerance, namely, the trade-off between control efficiency and error tolerance. 

Information like Figure 5-9 can assist in targeting system weak spots and identifying 

potential defending strategies (e.g., modify 𝒪 and 𝒩) to mitigate potential compounding 

impacts. 
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Figure 5-9. Heatmap of compounding flooding risks over different attacking lengths and 

return periods of 24-hour design storms. Grey color indicates zero in compounding risk of 

flooding. Each plot is one independent experiment differing in attacking targets of 𝐹𝐷𝐼𝑠 
scenario. The pond-conduit network is visualized inside the Pond 8 subplot. 

 

5.5  Discussion 

5.5.1  The Missing Piece of Compounding Risks Quantification 

This chapter proposes a quantification method for evaluating compounding risks given a 

stormwater system (𝒩), level of sensor noises (𝝈𝒔), weather forecast uncertainty (𝝈𝒘), an 

attacking strategy (𝒜), and an operation strategy (𝒪). However, compounding risk (𝑃𝑐) 

computed using Equation 5-20 is a conditional probability that conditions on a system is 

cyber-attacked (Depoy et al., 2005). While it is extremely difficult, if not impossible, to 

quantify the occurrence likelihood of a cyber-attack (𝑃𝑂), we want to discuss how we can 

approach this missing piece. We can view this issue from two aspects: (1) to what degree 

the system is exposed to the public and (2) the potential motivations that attackers want to 

cyber-attack the system. In the first aspect, data accessibility or the cyber security level of 
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cyberinfrastructures may provide a qualitative way to describe 𝑃𝑂 (Ezell et al., 2001). For 

example, suppose the water level measurements are easily accessible to the public. In that 

case, it is more likely for an attacker (assuming there is one) to learn how the system works 

and potentially increase the likelihood of implementing FDI. Similarly, suppose the cyber 

security level is low. In that case, e.g., the application programming interface to the cloud 

database or actuators are exposed, attackers may easily invade the system and steal data or 

directly control the outflow gates. The concept of privilege graph (Dacier and Deswarte, 

1994) and attack graph (Lippmann and Ingols, 2005) can potentially help us identify 

intrusion pathways, and Hahn and Govindarasu (2011) further propose exposure graph to 

evaluate 𝑃𝑂. In the second aspect, we can conduct a motivation-based analysis (Ngafeeson, 

2010) to identify the profit chain, in which we may estimate the likelihood of being cyber-

attacked, given the assumption of rational attackers. However, the quantification of 𝑃𝑂 

would still be subjective to the system operator and often require confidential information 

to do such analysis. Therefore, we left this part for future studies and focused on the 

conditional compounding risks we could quantify objectively in this chapter. 

5.5.2  Application in Network-based Systems 

Despite the abovementioned missing piece (𝑃𝑂), the proposed mathematical framework for 

compounding risk quantification can still provide useful information in identifying system 

vulnerable spots and assisting in defending strategy development. Identifying system-

vulnerable spots in critical infrastructures under the threat of compounding risks becomes 

significant as more IoT technologies are used, and the consequences of system failure could 

be catastrophic (e.g., dam failure). The proposed compounding risk quantification method 

can be applied to network-based critical infrastructures, such as irrigation pump-canal 
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systems, multi-reservoir joint operation systems, and drinking water distribution systems. 

Systems can be represented by a state-space model similar to the stormwater drainage 

system presented in this chapter. For example, studies have successfully used a state-space 

model and LQG controller with the consideration of backwater effects (Conde et al., 2021) 

to operate the irrigation canal system (Amin et al., 2012; Amin et al., 2013; Durdu, 2010; 

Schuurmans, 1997), which allow a direct application of our proposed method. Multi-

reservoir systems (Labadie, 2004) are also shown to be modeled and operated by a state-

space model and LQG controller in the topic of optimal flood control (Wasimi and 

Kitanidis, 1983) and hydropower scheduling (Georgakakos, 1989). Lastly, Ahmed et al. 

(2017) adopted a state-space model and Kalman filter in a water distribution network to 

evaluate attack detection schemes, which led to the potential adoption of our compounding 

risk quantification method with the modification of bad data detectors in future work.  

5.5.3  Limitations 

The proposed compounding risks quantification method is currently limited to 𝜒2 detector 

when computing 𝑃𝐹𝐷𝐼. However, it could adapt to other detectors with different probability 

distributions, where the general concept remains the same. For our demonstration case of 

a smart stormwater system, we adopt a simple time-invariant linear control system (i.e., 

LQG), where 𝐿, 𝐾, 𝐾𝑟 , and 𝐾𝑤 are constant given a storm and rely on predefined desired 

water levels (𝓻𝒕). Such assumptions might not be sufficient for the real-world control 

system, where the time-variant 𝐿, 𝐾, 𝐾𝑟 ,  and 𝐾𝑤  and a more flexible 𝓻𝒕  should be 

considered in a LQG controller. Despite these limitations, they will not affect the 

compounding risks quantification concept shown in this chapter. However, future works 

are required to test how the results of compounding risks evaluation are influenced by time-



129 

 

variant settings. Finally, this chapter only considers a binary flooding risk. We recommend 

future works include the flooding quantity or depth, which may estimate potential property 

damages of compounding impacts. 

5.6  Conclusions 

With growing IoT-based infrastructures being applied to water systems, cyber risks are 

also introduced. However, the compounding risks involving natural hazards and cyber-

attacks have not yet been well-explored. The need for a method to identify vulnerable spots 

in the system under the threat of compounding risks emerges. This chapter proposed a 

mathematical framework to address this gap. We implemented the proposed method in a 

nine-pond smart stormwater system, consisting of water level sensors and outflow gate 

actuators, on an urban flooding issue. The stormwater dynamics are represented by a state-

space model, and the outflows of ponds are controlled by a LQG controller in real-time. 

We evaluate the compounding impacts of storms and FDI and quantify the compounding 

risks with combinations of different storm intensities and attacking lengths.  

Our results demonstrate the potential consequences of FDI, such as creating a large 

inflow peak or maliciously reducing the outflow to intensify the flooding risks. We also 

show that the flooding risk patterns of different storm intensities are significantly changed 

by FDI, which indicates the merit of the compounding risks in future system planning and 

investment. The proposed mathematical framework can serve as a foundation to evaluate 

the effectiveness of different defending strategies over potential attacking strategies for 

future studies. While some limitations still exist (e.g., the occurrence likelihood of a cyber-

attack, 𝜒2 detector, and time-invariant LQG controller), the proposed method can be used 
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in other network-based water systems, such as irrigation canal systems, multi-reservoir 

systems, and water distribution systems. 
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Chapter 6: Conclusions 

This dissertation advances the knowledge of co-evolution in CAWS from the aspects of (1) 

investigating the co-evolution of farmers’ water diversion decisions in response to 

environmental changes and the role of social norm structure through two-way coupling 

RiverWare and ABM, (2) developing open-source python package of a semi-distributed 

hydrological model that can freely integrate user-defined ABM for CAWS modeling, (3) 

implementing uncertainty analysis to quantify the effects of model complexity on model 

output uncertainty (i.e., equifinality) in coupled hydrological and ABM models, and (4) 

analyzing compounding risks of storms and cyber-physical attacks that could potentially 

impact people’s short-term responses. We conclude the previous chapters with their major 

findings in the following paragraphs with respect to the four aspects listed above. 

6.1  Research Findings 

Chapter 2 explores the co-evolution in CAWS through a case study in the Yakima River 

Basin, Northwest US. Three numerical experiments were designed. First, we demonstrate 

that coupled models (e.g., Coupled-YAKRW and Coupled-YAKRW w/o S.) can better 

capture both irrigation diversion (human behaviors) and streamflow dynamic (nature 

system) compared to the baseline model (i.e., YAKRW), which is used for policymaking 

in the real world. Second, we analyzed the role of the social norm effect through a local 

sensitivity analysis. Although similar simulation results were found between coupled 

models with or without social norm effect, the evidence is insufficient to draw a conclusion 

due to the dominant RiverWare policy rules and the model equifinality issue (see Chapter 

4). Lastly, we show farmers’ diversion behaviors and risk attitudes could be affected by 

the changing policy rules. In this case study, agents become more sensitive (i.e., risk-averse) 
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to the changing environment under the all-proratable-water-rights scenario. The findings 

and cross-scale nature of the two-way coupling technique could benefit policymaking for 

future multi-level water resources governance applications, which often require cross-scale 

analysis. 

Chapter 3 develops a semi-distributed Hydrological model for Coupled Natural–

Human Systems, HydroCNHS, an open-source Python package, and demonstrates its 

functionalities through a case study in the Tualatin River Basin, Northwest US. We 

integrate a trans-basin aqueduct, a reservoir, an irrigation diversion, and two drainage 

system agents accounting for runoff changes with four coupling APIs linked to two 

different rainfall-runoff models, GWLF and ABCD. The designed APIs handle within-

subbasin and inter-subbasin routings internally in HydroCNHS. Similar to Chapter 2, we 

show that coupled models could capture monthly streamflow, irrigation diversion, and 

reservoir release patterns. Results further indicate the model with endogenous diversion 

behavioral rule better reflects the interaction between natural and human systems. In 

addition, the results of the runoff-changing scenario show the capability of HydroCNHS in 

modeling the effects of gradual environmental changes on streamflow. With coding 

language integrity, flexibility in designing agents, and parallel computing ability, the 

HydroCNHS can facilitate uncertainty analysis in CAWS, leading to Chapter 4. 

Chapter 4 targets a challenging task of uncertainty analysis in CAWS using the 

same study area as Chapter 2, the Yakima River Basin in Northwest US, where irrigation 

districts are defined as agents. We quantify and then decompose the uncertainty of a semi-

distributed hydrological model coupled with an agent-based water diversion model into 

three sources by the law of total variance: (a) climate scenario uncertainty, (b) climate 
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internal variability, and (c) model configuration uncertainty. Five coupled models with 

different water diversion agent types are tested in the numerical experiments: (a) a static 

model, (b) an adaptive model with linear functions, (c) an adaptive model with quadratic 

functions, (d) a learning adaptive model with linear functions, and (e) a learning adaptive 

model with quadratic functions. Results accept our hypotheses—(i) model uncertainty in 

an exploratory analysis will likely increase with model complexity, given uncertain input 

data (e.g., climate forcing) and different model configurations, and (ii) the inclusion of a 

learning mechanism in a human system can potentially offset the impact of natural system’s 

variability on output uncertainty. Co-evolution plays a major role in shaping the 

relationship between model output uncertainty and model complexity. For example, the 

learning adaptive models show a decreasing trend in the natural system output because 

agents learn and adapt to environmental changes, where the learnability and adaptability 

are revealed by increased variability of the human system outputs. Despite the smaller 

natural system output uncertainty in the learning adaptive models, we suggest the modeler 

should be aware of the assumptions of model structure, such as the appropriateness of 

learning assumptions in the exploratory analysis of a given case study. 

Chapter 5 shifts the perspective from long-term planning to short-term responses, in 

which we argue that the newly introduced cyber-physical risks could change the flooding 

risks in a smart stormwater system and potentially alter long-term co-evolution patterns. 

Chapter 5 serves as the initial step of this argument. We apply a mathematical framework 

to quantify compounding risks of storms and FDI in a nine-pond smart stormwater system, 

consisting of water level sensors and outflow gate actuators, on an urban flooding issue. 

The stormwater dynamics are represented by a state-space model, and the ponds’ outflows 
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are controlled by a LQG controller in real-time. The numerical experiments evaluate the 

compounding impacts of storms and FDI and quantify the compounding risks with 

different storm intensities and attacking lengths. Results show that false data injection (FDI) 

attacks can successfully inject false data into the control system without being detected, 

leading to additional flooding risks. We found that the flooding risk patterns of different 

storm intensities are significantly altered by FDI, where compounding risks tend to be 

higher with smaller, more frequent storms. Such results indicate the merit of the 

compounding risk concept.  

6.2  Limitations and Future Research 

This dissertation explores the co-evolution in CAWS through a numerical modeling 

approach. For long-term planning, we investigate the social norm effect, develop a semi-

distributed hydrological model that can integrate human systems, and conduct an 

uncertainty analysis to gain insights into the trade-offs between model complexity and 

model output uncertainty. For short-term responses, we quantify the compounding risks of 

storms and human interventions (i.e., FDI) in a smart stormwater system to initiate the 

conversation on the potential human responses or defending strategies to address the 

additional flooding risks from cyber-physical attacks. However, future work is needed to 

evaluate assumptions and overcome the limitations of our work. We discuss limitations 

and point out future research directions in the following paragraphs. 

Chapter 2 adopts a two-way coupling technique to couple ABM with RiverWare. 

Although using the existing YAKRW model developed by USBR can leverage its 

credibility, some RiverWare-embedded policies like water rights and drought operations 

may dominate the coupled models’ modeling results, affecting the experiment's efficiency 
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in exploring the human system, such as the social norm effect. However, we are not 

suggesting not to couple YAKRW since those dominant policies may be enforced in the 

real world due to legal issues constraining people’s behaviors. The water reallocation 

scenario experiment indicates that the changing water allocation policy can shift people’s 

risk attitudes toward risk-averse. We suggest future studies incorporate water banking or 

water market mechanisms into the ABM and re-test the water reallocation scenario to see 

how people behave with the additional trading option. 

Chapter 3 targets open-source software for CAWS modeling. The developed 

HydroCNHS are able to couple with more diverse (e.g., hydropower plants and cooling 

plants) and more complex (e.g., interactions among agents and hydrological environment) 

agent designs with the given coupling APIs in future studies. However, it requires a certain 

level of coding experience in programming ABM. We can further add a more user-friendly 

interface and default agent types into highly modularized and well-documented 

HydroCNHS as a plug-in to benefit broader communities, even for people without coding 

experience. Also, additional hydrological components like sediment routing, nutrients 

simulation, and groundwater transportation can be further developed to enrich the 

functionality of the current HydroCNHS version that focuses on just water balance 

computing. 

Chapter 4 investigates components of the modeling output uncertainty in response 

to different agent-type complexities in CAWS modeling. In the numerical experiment 

design, we follow the conventional calibration and validation procedure (i.e., splitting a 

time series into two portions) that relies on the stationary assumption. Also, we assume 

agents’ adaptability and learnability remain the same as in the historical period. These 
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limitations will need further effort to address as the world is non-stationary, and human 

behavioral characteristics (e.g., adaptability and learnability) could change. Combining 

empirical social data (e.g., surveys and behavioral experiments) may provide evidence to 

support model design to include the vicissitude of hyperparameters. In addition, this 

chapter focuses on uncertainty sources of climate change scenarios, internal climate 

variability, and equifinality. We suggest analyzing additional uncertainty sources, such as 

indicator selection, model resolution level, and coupling structure with a more 

sophisticated agent setup and scale-up experiments in future work. 

Chapter 5 gives the initial step of quantifying the compounding risks of storms and 

cyber-physical attacks to discuss potential human responses and defending strategies for 

long-term flood planning and smart stormwater system design. The proposed 

quantification method is limited to 𝜒2 bad data detector. However, this can be addressed 

by adopting other detectors, in which the probability distribution of errors is available. As 

an initial study of this topic, we apply to a simple time-invariant linear control system (i.e., 

parameters in the LQG controller are fixed), where the time-variant parameters (e.g., 

𝐿, 𝐾, 𝐾𝑟 ,  and 𝐾𝑤 ) should be considered in future work. Also, the control targets (i.e., 

desired water levels) are predefined for each design storm. Future studies may design real-

time-generated control targets by using, e.g., machine learning to analyze the compounding 

risks with actual precipitation data. Also, we recommend future works include the flooding 

quantity or depth in addition to a binary flooding risk. This may benefit estimating potential 

property damages of compounding impacts. 

Lastly, this dissertation contributes to several aspects of CAWS modeling to 

understand the co-evolution between nature and human systems. The relationship between 
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long-term planning and short-term responses has not yet been thoroughly investigated. 

They are partially explored from different angles in this dissertation. A more high-level 

framework and assessment across a wide variety of application topics like water quality 

management, disaster risk reduction, water resources allocation, and goods/water trading 

markets may assist in identifying general rules governing co-evolution and risk 

propagations that further complete the picture of this dissertation. 
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Appendix A: Supplementary Materials for Chapter 2 

A.1 Py-RAMID technical details 

In this section, the file-based two-way coupling technical details of Py-RAMID will be 

provided. For the instruction on Py-RAMID, please see the user manual at 

https://github.com/philip928lin/Py-RAMID.  

 

Figure A1. Py-RAMID framework and calibration structure. Two grey arrows indicate 

primary tasks performed by the Py-RAMID framework. Three background colors 

distinguish three modules in the Py-RAMID. Three user-prepared items are highlighted in 

red boxes. The feedback loop is shown with thick solid arrows. 

 

Inside Py-RAMID, the coupling mechanism between RW and ABM is achieved by 

utilizing the RW model’s data management interface (DMI), which can import and export 

data from and to text files as well as trigger outside executable programs (e.g., .bat or .exe). 

In a feedback loop (Figure A1), the RW-to-ABM DMI will be first activated by the RW; 

output corresponding to RW simulated data is defined in .control files. The RW-to-ABM 

DMI will then trigger the ABM model (must be an executable program), which is designed 

to intake RW outputs and generate updated data. In Py-RAMID, we allow ABM models 

https://github.com/philip928lin/Py-RAMID
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that are python files (e.g., ABM.py) or executable files (e.g., ABM.exe). If ABM.py is 

provided, Py-RAMID will wrap ABM.py with a .bat file, which is executable in the 

Windows operating system. Finally, the feedback loop is closed by re-importing ABM 

outputs into the RW model through the ABM-to-RW DMI. Without Py-RAMID, modelers 

need to manually prepare these files for each experiment. 

With the assistance of Py-RAMID, modelers only need to prepare three items, with 

some modifications, in the original RW model. The three user-prepared items are (1) 

ModelSetting (.json) file (Figure A3), (2) the modified RW model, and (3) the ABM model 

(.py), which are all highlighted by red rectangles in Figure A1. In the ModelSetting (.json) 

file, modelers define the information flow for data exchange between RW and ABM 

(import/export slots of the RW), the RW simulation periods, and other RW actions using 

RW command language (e.g., LoadRules). Using the information in ModelSetting (.json), 

Py-RAMID will create control (.control) and batch (.rcl) files. DMI uses control files to 

determine the imported/exported slots. A batch file is used to execute the RW model with 

predefined action orders (e.g., OpenWorkspace, LoadRules, and SetRunInfo). Therefore, 

Py-RAMID serves as a wrapper to help modelers form all required coupling files. However, 

modelers must add two additional policies that are associated with the RW-to-ABM and 

ABM-to-RW DMIs into the original RW policy rules (.rls) for the very first time. Inside 

those two additional policies, modelers can define data exchange frequency; for example, 

to export the RW data on 31 December of a year and re-import the data on 1 January of a 

year. Finally, modelers have complete freedom to define agents and their interactions using 

any ABM frameworks for ABM.py.  
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As the original RW model can involve a tremendous amount of policy rules and 

initial settings, modelers must be aware of errors, such as invalid initial values (e.g., invalid 

reservoir storage) or other logically incorrect-but-not-erroneous values. For example, river 

discharge might be adjusted by other irregular inflows through policy rules to fit the 

observed data, which causes river discharge to become unrepresentative of different water 

diversion values. Py-RAMID cannot automatically correct RW issues, which should be 

aware of by modelers.  

To calibrate the coupled model, especially the ABM model, modelers need to load 

parameters that must be calibrated from separated files, such as Par.csv. Then, our GA 

module will update parameters in Par.csv during the calibration process according to a 

user-defined minimization objective value (e.g., -NSE). In the GA module, we developed 

an auto-calibration process in parallel using a genetic algorithm. Our GA is built on the 

geneticalgorithm package (https://github.com/rmsolgi/geneticalgorithm), and 

parallelization is achieved by utilizing the joblib package (https://github.com/joblib/joblib). 

In addition to the joblib package, the GA module will replicate and modify necessary 

coupled model files into an isolated working space to overcome the file exchange conflicts 

in parallel computing. The GA module also provides options to remove replicated 

simulation space for storage control. Additionally, the GA module supports an auto-save 

mechanism to prevent accidental interruption (e.g., computer shut down or model crash) 

and allows to continue of previous unfinished calibration. 

  

https://github.com/rmsolgi/geneticalgorithm
https://github.com/joblib/joblib
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A.2 ODD+D Protocol of Agent-Based Model 

1.    Overview 

1.1.    Purpose 

Coupled-YAKRW aims to demonstrate the modularized two-way coupling framework 

using Py-RAMID. From the perspective of a case study, Coupled-YAKRW is built for 

decision-makers. Coupled-YAKRW can simulate district diversion request decisions and 

their reciprocal interaction with the external environment, simulated by a physical 

hydrological model, RiverWare. 

1.2.    Entities, state variables, and scales 

Coupled-YAKRW has six agents representing six major water use districts in the YRB. 

Namely, the space characteristics are implied in each agent’s diverted location (e.g., 

district). Each agent has ten attributions, including two state variables and eight parameters, 

as shown in Table 2-2. The simulation period is from 1960 to 2005, which is separated into 

(1) warm-up period (1960－1965), (2) calibration period (1966－1995), and (3) validation 

period (1996-2005). The agent’s decision (e.g., diversion requests) is made annually. 

1.3.    Process overview and scheduling 

The interaction between agents and the environment in Coupled-YAKRW is triggered at 

the beginning of each year. The state variables will be updated, and the updated diversion 

requests for each district will be imported into the RiverWare (e.g., YAKRW). 

2.    Design Concepts 

2.1.    Theoretical and Empirical Background  

For the decision-making process in the ABM model (yellow boxes in Figure A2), we 

followed the Theory of Planned Behavior (Ajzen, 1991) as a guideline, which states that 
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the behavior is built upon intention (e.g., diversion requests) and reality constraints (e.g., 

water rights, canal capacity).  

2.2.    Individual Decision-Making 

The agent’s objective is to decide the amount of requested diversion according to historical 

diversion records and external information (e.g., precipitation and reservoirs’ storage). The 

basic rationality is that agents will make their predictions based on current and historical 

observations. These predictions are adjusted by the social norm effect and the agent’s risk 

attitude in the later decision-making process. The Coupled-YAKRW is a single-agent level 

model. The details of the agent’s decision-making process and its calculation are presented 

in Appendix A.3. 

2.3.    Learning 

The agent’s decision rules (e.g., state variable C) will be updated by learning the difference 

in the simulated and observed river discharges using reinforcement learning (Equation A-

3). 

2.4.    Individual Sensing 

In Coupled-YAKRW, agents can sense external states (e.g., winter precipitation, reservoir 

storages, and differences in the simulated and observed river discharges) and neighbors’ 

evaluation of the water supply conditions (social norm effect). There are no costs and time 

lags to acquire the abovementioned information. 

2.5.    Individual Prediction 

According to the agent’s selected InfoSource, the agent will evaluate the water supply 

conditions based on the Empirical Cumulative Distribution Function (ECDF) value of the 
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current year’s (𝑦𝑡 ) observation. The ECDF is constructed by the historical records of 

selected InfoSource from the initial year (𝑦𝑡𝑜) to 𝑦𝑡−1. 

2.6.    Interaction 

The Coupled-YAKRW has direct interaction among agents defined by the social norm 

effect and indirect interaction through the feedback from the RiverWare simulation. 

2.7.    Collectives 

No collectives (or single collectives) are in our case study area. 

2.8.    Heterogeneity 

Each agent will have a unique set of attributions (Table 2-2) to represent their heterogeneity. 

2.9.    Stochasticity 

According to their perceived beliefs, Coupled-YAKRW has a stochastic simulation option 

in which the agent randomly decides a diversion-request-adjustment ratio according to a 

probability distribution. However, during the model calibration and the experiment in 

Chapter 2, this stochastic option is replaced by the expected value to enhance the 

convergent speed in GA calibration. 

2.10.    Observation 

We evaluate Coupled-YAKRW performance using observations of six diversions (agent 

level) and observations of two river discharges (basin level). The observed data is collected 

from the Hydromet platform operated by the U.S. Bureau of Reclamation. 

3.    Details 

3.1.    Implementation Details 
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Coupled-YAKRW, constructed by Py-RAMID package, is designed to run under Python 

3.7 in the Windows system. Coupled-YAKRW is accessible at the request of the 

corresponding author. 

3.2.    Initialization 

We have a fixed initialization in Coupled-YAKRW. For the ABM part, initial diversion 

request records are defined by observations of the previous year’s diversion. RiverWare 

(e.g., YAKRW) initializes the model before simulation with predefined input values, such 

as input flows, policies, and initial reservoirs’ storage, on 31 October 1960. 

3.3.    Input Data 

All required input data to run RiverWare has been stored in YAKRW. For the ABM part, 

the grid-based precipitation data from Maurer et al. (2002) are used. The observed reservoir 

storage and observed diversion data are from the Hydromet platform. 

3.4.    Sub-models 

There are no sub-models in Coupled-YAKRW. 
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A.3 Agent’s decision-making algorithm for diversion request 

The ABM part of Coupled-YAKRW describes the decision-making process of six major 

water use districts’ diversion requests. The decision-making process is composed of six 

steps. Each step is described below. 

 

 

Figure A2. Coupled-YAKRW simulation schema. Yellow boxes are agent decision-

making processes (dotted thin arrows), which output the ratio (𝑅𝑔,𝑦𝑡) that is used to adjust 

the mean annual diversion request (circle number 6) and to simulate the next year by RW. 

Annual mean diversion request is computed using all historical annual diversion request 

records before the current year. Solid arrows connecting diversion requests (green boxes) 

and the RW model (blues boxes) show information flow in the coupling process. 

 

Step 1: Making a rational prediction from ECDF constructed by historical records. 

The agent will first evaluate the water supply conditions (𝑝𝑔,𝑦𝑡) based on the ECDF value 

of the current year’s (𝑦𝑡) observation (𝑥𝑔,𝑦𝑡) on the selected 𝐼𝑛𝑓𝑜𝑆𝑜𝑢𝑟𝑐𝑒. The ECDF is 

constructed by the historical records of selected 𝐼𝑛𝑓𝑜𝑆𝑜𝑢𝑟𝑐𝑒 from the initial year (𝑦𝑡0) to 

𝑦𝑡−1. The formula is shown in Equation A-1. 

 𝑝𝑔,𝑦𝑡 = ECDF𝐼𝑛𝑓𝑜𝑆𝑜𝑢𝑟𝑐𝑒,𝑁(𝑥𝑔,𝑦𝑡) (A-1) 

where 𝑔 is an agent’s index, 𝑡 is the current year, and 𝑁 is the memory length of an agent, 

defined as the number of years from 𝑦𝑡0 to 𝑦𝑡−1. 
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Step 2: Social norm effect 

Given a social network matrix (𝑆), a weight vector (𝑆𝑤), and a vector of agents’ own 

evaluation of water supply conditions in 𝑦𝑡  (𝑃), the adjusted perceived belief (𝑝𝑔,𝑦𝑡
𝑎𝑑𝑗

) is 

calculated by Equation A-2. 

 𝑝𝑔,𝑦𝑡
𝑎𝑑𝑗

= (1 − 𝑆𝑤𝑔,𝑔) × 𝑃𝑔,𝑦𝑡 + 𝑆𝑤𝑔,𝑔∑ 𝑆𝑔,𝑖 × 𝑃𝑖,𝑦𝑡
𝑁𝑎𝑔𝑒𝑛𝑡𝑠
𝑖=1,𝑖≠𝑔

 (A-2) 

where 𝑁𝑎𝑔𝑒𝑛𝑡𝑠 denotes the total number of agents. 

Step 3: Adaptive learning 

In step 3, agents will adaptively update their decision rules by updating a state variable, 

Center (𝐶𝑔,𝑦𝑡), to reinforce the average difference between the simulated and observed river 

discharges (𝑣𝑔,𝑦𝑡) at their downstream area to be minimized. We adopted a generalized 

form of the Bush-Mosteller model (Brenner, 2006), a type of reinforcement learning model, 

to achieve the agent’s adaptive learning behavior shown in the following equations. 

 𝐶𝑔,𝑦𝑡 = {
𝐶𝑔,𝑦𝑡−1 + ℎ𝑔,𝑡 × 𝛾𝑔 × (1 − 𝐶𝑔,𝑦𝑡−1)    𝑖𝑓 ℎ𝑔,𝑡 ≥ 0

𝐶𝑔,𝑦𝑡−1 + ℎ𝑔,𝑡 × 𝛾𝑔 × 𝐶𝑔,𝑦𝑡−1                𝑖𝑓 ℎ𝑔,𝑡 < 0
 (A-3) 

where the strength (ℎ𝑔,𝑡) is calculated by Equation A-4. In Equation A-4, 𝑣𝑔,𝑡 is equal to 

the observed river discharges minus the simulated discharges. 𝑣𝑔,𝑦𝑡 scaled by a scale factor 

(𝑆𝑐𝑔 ) is then transformed into a value between 0 and 1 through a sigmoid function 

(Equation A-5). A “0.5” downshift defines the strength as positive or negative. The range 

of the strength becomes –0.5 to 0.5. 

 ℎ𝑔,𝑦𝑡 = {
𝜎 (

𝑣𝑔,𝑦𝑡

𝑆𝑐𝑔
) − 0.5                𝑖𝑓 𝑣𝑔,𝑦𝑡 ≥ 0

1 − 𝜎 (−
𝑣𝑔,𝑦𝑡

𝑆𝑐𝑔
) − 0.5    𝑖𝑓 𝑣𝑔,𝑦𝑡 < 0

 (A-4) 

 𝜎(𝑥) =
1

1+𝑒−𝑥
 (A-5) 
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Step 4: Perceived risk bias adjustment 

Before the adjustment, 𝑝𝑔,𝑦𝑡
𝑎𝑑𝑗

 is converted into a vector of values of a discretized beta 

probability distribution computed from 𝑝𝑔,𝑦𝑡
𝑎𝑑𝑗

 and 𝑁 (Equation A-6). 

 𝑃𝑔,𝑦𝑡
𝑎𝑑𝑗
 ~ Beta(𝑎, 𝑏) (A-6) 

 where 𝑎 = 𝑝𝑔,𝑦𝑡
𝑎𝑑𝑗

× 𝑁, 𝑏 = (1 − 𝑝𝑔,𝑦𝑡
𝑎𝑑𝑗
) × 𝑁, and Beta is a beta distribution. 

Then, we address the agent’s personal bias according to their risk attitude through a 

prospect function (Kahneman & Tversky, 2013) with a small modification. The modified 

prospect function comprises two nonlinear convex or concave curves splitting by 𝐶𝑔,𝑦𝑡, 

which represents the agent’s risk attitude toward positive belief (more available water) and 

negative belief (less available water). For a positive belief (larger than 𝐶𝑔,𝑦𝑡), the convex 

function indicates the agent is risk-seeking in positive belief, while the concave function 

indicates a risk-averse attitude. On the contrary, for negative beliefs, the convex function 

indicates risk-seeking and the concave function means risk-averse for the agents’ attitude. 

The agent’s perceived belief (𝑃𝑔,𝑦𝑡
𝑏𝑖𝑎𝑠) is then calculated by Equation A-7  

 𝑃𝑔,𝑦𝑡
𝑏𝑖𝑎𝑠 =

{
 

 (
𝑝−𝐶𝑔,𝑦𝑡

1−𝐶𝑔,𝑦𝑡
)
𝛼𝑎𝑔

× (1 − 𝐶𝑔,𝑦𝑡) + 𝐶𝑔,𝑦𝑡    𝑖𝑓  𝑝 ∈ 𝑃𝑔,𝑦𝑡
𝑎𝑑𝑗
, 𝑝 ≥ 𝐶𝑔,𝑦𝑡

(
𝑝−𝐶𝑔,𝑦𝑡

𝐶𝑔,𝑡
)
𝛽𝑎𝑔

× 𝐶𝑔,𝑦𝑡 + 𝐶𝑔,𝑦𝑡                𝑖𝑓  𝑝 ∈ 𝑃𝑔,𝑦𝑡
𝑎𝑑𝑗
, 𝑝 < 𝐶𝑔,𝑦𝑡

 (A-7) 

where 𝛼𝑔 and 𝛽𝑔 are curvatures of the nonlinear curves for the positive and negative beliefs, 

respectively. 

Step 5: Linear mapping for generating a diversion-request-adjustment ratio 

To map the perceived belief into a diversion-request-adjustment ratio (𝑅𝑎𝑔,𝑦𝑡), a linear 

mapping function (Equation A-8) is applied. 
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 𝑅𝑔,𝑦𝑡 = ((ECDF𝑃𝑔,𝑦𝑡
𝑏𝑖𝑎𝑠
−1 (𝑢𝑔,𝑦𝑡) × 2 − 1) − (𝐶𝑔,𝑦𝑡 − 0.5) × 2) × 𝑅𝑔,𝑚𝑎𝑥 (A-8) 

where 𝑢𝑔 is a random number from a Uniform(0,1) distribution.  

In Chapter 2, the 𝑅𝑔,𝑦𝑡  is represented by the expected value (𝑅𝑔
𝐸𝑥𝑝

) for enhancing the 

calibration converging speed. 

 𝑅𝑔,𝑦𝑡
𝐸𝑥𝑝 = 𝐸𝑢[𝑅𝑔,𝑦𝑡] (A-9) 

In addition, to prevent the numerical error, the 𝑅𝑔,𝑦𝑡
𝐸𝑥𝑝

 is forced to be greater than -0.9. If it 

is below -0.9, the algorithm will replace it with -0.9. 

Step 6: Disaggregate to daily diversion request input 

The annual diversion request (𝐷𝑖𝑣𝑔,𝑦𝑡 ) is first calculated by Equation A-10, then it is 

disaggregated into a daily scale by a fixed averaged daily diversion proportions computed 

by each district’s observed diversion data from 1960 to 2005.  

 𝐷𝑖𝑣𝑔,𝑦𝑡 = 𝑅𝑔,𝑦𝑡
𝐸𝑥𝑝 ×

1

𝑁
∑ 𝐷𝑖𝑣𝑔,𝑖
𝑁
𝑖=1  (A-10) 
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A.4 Supplementary figures and tables 

 

Figure A3. ModelSetting.json of Coupled-YAKRW. 
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Figure A4. Model comparison of annual river discharges. Grey lines are the observed 

annual river discharges. Green dashed lines are the outputs of the original YAKRW model. 

Blue and red dotted lines are simulated results from coupled-YAKRW and coupled-

YAKRW w/o S., respectively. 

 

 

Figure A5. Model comparison of annual diversions with two water allocation setups (e.g., 

water rights) in Coupled-YAKRW w/o S. Black solid lines are the original Coupled-

YAKRW w/o S. simulation results, while blue dotted lines are with an all-proratable-water-

rights scenario. 



167 

 

 

Figure A6. Equifinal parameter sets in Coupled-YAKRW w/o S. The equifinal parameter 

sets are selected by the top 1% of model performance (mean NSE) in the calibration period 

(𝑂𝑏𝑗𝑐𝑎𝑙𝑖). Darker lines represent the optimal parameter set. 

 

Table A1. Calibrated parameters of Coupled-YAKRW. 

Parameter Roza Sunnyside Tieton Kennewick Kittitas Wapato 

𝛾 0.49 0.98 0.78 0.18 0.64 0.57 

𝑆𝑐 140300 205753 38107 47453 145720 296022 

α 1.50 1.15 1.82 0.87 1.83 0.29 

β 1.37 1.88 0.37 0.81 1.70 1.05 

𝑅𝑚𝑎𝑥 0.22 0.34 0.10 0.29 0.23 0.16 

 

Table A2. Calibrated parameters of Coupled-YAKRW w/o S. 

Parameter Roza Sunnyside Tieton Kennewick Kittitas Wapato 

𝛾 0.32 0.02 1.00 0.11 0.00 0.75 

𝑆𝑐 160206 218155 41270 46129 167101 299637 

α 0.93 0.68 0.55 1.46 0.24 1.18 

β 1.06 0.80 0.83 1.22 0.07 1.33 

𝑅𝑚𝑎𝑥 0.03 0.04 0.21 0.26 0.17 0.03 
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Table A3. (a) Calibrated social network matrix and (b) the weight vector of the social norm. 

(a) Roza Sunnyside Tieton Kennewick Kittitas Wapato (b) 𝑆𝑤 

Roza  1 0 1 1 0  0.51 

Sunnyside 0  1 1 1 1  0.13 

Tieton 1 1  1 1 1  0.09 

Kennewick 1 0 1  1 0  0.42 

Kittitas 0 1 0 0  0  0.86 

Wapato 1 0 1 1 0   0.53 
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Appendix B: Supplementary Materials for Chapter 3 

B.1 Agents’ design for the Tualatin River Basin (TRB) 

In this study, we design four types of agents (i.e., DivAgt, ResAgt, PipeAgt, and DrainAgt) 

to run the numerical experiment. These agents are programmed in the TRB_ABM module 

(.py), which is not included in the HydroCNHS package. Namely, users can integrate their 

human models (ABMs) with more sophisticated agent behaviors following the basic 

example in the TRB case study. Below are the simple behavior rules of the four agent types 

that we used in this study. 

DivAgt 

The diversion agent (DivAgt) makes monthly-diversion-request decisions at the beginning 

of each month and has a return flow back to the river. For this example, we design the 

diversion-request decisions from June to September to be governed by a linear function 

(i.e., y = ax + b), where the perfect forecast of monthly precipitation (𝑃𝑟𝑚 ). Minor 

diversions in other months are filled with monthly mean values (𝐷𝑖𝑣𝑚  [m3/sec]) is the 

predictor. Note that we bound the monthly-diversion-request decision by the historical 

maximum (𝐷𝑖𝑣𝑚𝑎𝑥,𝑚  [m3/sec]) and minimum (𝐷𝑖𝑣𝑚𝑖𝑛,𝑚  [m3/sec]) monthly diversion 

values to prevent unrealistic decisions. The monthly-diversion-request decisions (𝐷𝑖𝑣𝑟𝑒𝑞,𝑚) 

is calculated by 

𝐷𝑖𝑣𝑟𝑒𝑞,𝑚 = {
min(𝑚𝑎𝑥(𝐷𝑖𝑣𝑚 + 𝑙𝑎 × 𝑃𝑟𝑚 + 𝑙𝑏 , 𝐷𝑖𝑣𝑚𝑖𝑛,𝑚) , 𝐷𝑖𝑣𝑚𝑎𝑥,𝑚) ,     𝑚 ∈ 6~9

𝐷𝑖𝑣𝑚,                                                                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    

  (B-1) 
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The actual daily diversion (𝐷𝑖𝑣𝑡 [m
3/sec]; shown below) is constrained by the available 

water. We simply assume the available water equal to the streamflow (𝑄𝑟,𝑡 [m
3/sec]) at the 

diversion outlet. 𝑙𝑎 and 𝑙𝑏 are the parameters for the linear function. 

 𝐷𝑖𝑣𝑡 = min(𝑄𝑟,𝑡, 𝐷𝑖𝑣𝑟𝑒𝑞,𝑚) ,     for all 𝑡 ∈ timestep in 𝑚 (B-2) 

The return flow (𝑅𝑒𝑡 [m
3/sec]) is determined by a calibrated factor (𝐹𝑎𝑟𝑒). 

 𝑅𝑒𝑡 = 𝐹𝑎𝑟𝑒 × 𝐷𝑖𝑣𝑡 (B-3) 

The historical diversion data source is shown in Table B2 (station code is SHPP). 

ResAgt 

The reservoir agent (ResAgt) determines reservoir releases (𝑅𝑒𝑠𝑡 [m
3/sec]) by a generic 

operational rule modified from Neitsch et al. (2011), where target storages (𝑇𝑠𝑡 [m
3]) and 

target releases (𝑇𝑟𝑡 [m
3/sec]) are adopted for flood control (October - May) and storage 

control (June - September) period. 

 For the flood control period, releases are computed by  

 𝑅𝑒𝑠𝑡 = {
max (

𝑆𝑡−1+𝐼𝑡−𝑇𝑠𝑡

86400
, 𝑅𝑒𝑠𝑚𝑖𝑛),       𝑆𝑡−1 + 𝐼𝑡 ≥ 𝑆𝑚𝑖𝑛

0,                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (B-4) 

 𝑆𝑡 = 𝑆𝑡−1 + 𝐼𝑡 − 𝑅𝑒𝑠𝑡 × 86400 (B-5) 

where 𝑆𝑡  [m
3] is storage at time t and 𝑆𝑚𝑖𝑛  [m3] is the inactive (dead) storage. 𝑅𝑒𝑠𝑚𝑖𝑛 

[m3/sec] is a constant minimum release. 𝐼𝑡 [m
3/sec] is the inflow. We adopted daily values 

interpolated over 95% quantile of historical monthly storage from 1981 to 2013 as our 

target storage. 

For the storage control period, releases are computed by 

 𝑅𝑒𝑠𝑡 =

{
 

 
𝑆𝑡−1+𝐼𝑡−𝑆𝑚𝑎𝑥,𝑡

86400
,       𝑆𝑡𝑒𝑚𝑝,𝑡 ≥ 𝑆𝑚𝑎𝑥,𝑡

𝑆𝑡−1+𝐼𝑡−𝑆𝑞5,𝑡

86400
,            𝑆𝑡𝑒𝑚𝑝,𝑡 ≤ 𝑆𝑞5,𝑡

𝑇𝑟𝑡,                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (B-6) 



171 

 

 𝑆𝑡𝑒𝑚𝑝,𝑡 = 𝑆𝑡−1 + 𝐼𝑡 − 𝑇𝑟𝑡 × 86400 (B-7) 

where the target releases are constrained by the 𝑆𝑚𝑎𝑥,𝑡  [m3] and 𝑆𝑞5,𝑡  [m3] that are 

calculated by the daily values interpolated over the maximum and 5% quantile of historical 

monthly storages from 1981 to 2013, respectively. The target releases are the daily values 

interpolated over 50% quantile of historical monthly releases from 1981 to 2013. The data 

sources of historical storage (station code is SCO) and release (station code is SCOO) 

values are in Table B2. 

PipeAgt 

The trans-basin aqueduct (PipeAgt) conveys water from the Barney reservoir (outside the 

TRB) to the outlet TRTR. For simplicity, we didn’t model the Barney reservoir (i.e., 

diversion outside of the TRB) and assigned the amount of conveying water (𝐶𝑡 [m
3/sec]) 

to TRTR with observed median values of each month, where the data source is shown in 

Table B2 with station code TRTR. 

 𝐶𝑡 = 𝐶𝑚          for all 𝑡 ∈ timesteps in 𝑚 (B-8) 

DrainAgt 

DrainAgt is coupled through InSitu API, which is used to test the runoff-changing scenario. 

One of the possible reasons for altering the runoff in a subbasin is urbanization (Gwenzi et 

al., 2014). Therefore, in this scenario, we assume a linear change of the urbanized area in 

the DAIRY and RCTV subbasins from 5% to 50% ( 𝑟𝑎𝑡𝑖𝑜𝑡) , where each unit of 

urbanization increases unit runoff by 75% (Gwenzi et al., 2014).  

 𝐸𝑢𝑡 = 𝑟𝑎𝑡𝑖𝑜𝑡 × 0.75 × 𝐹𝑡 (B-9) 

where 𝐸𝑢𝑡 is the runoffs change and 𝐹𝑡 is the original subbasin runoff. 
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B.2 Calibration setting for the TRB 

In the TRB case study, we calibrate two coupled models (Mgwlf and Mabcd) with two 

different LSMs, GWLF and ABCD. The calibration information, including the number of 

calibrating parameters and the calibration targets for these two models, is shown in Table 

B1. The calibrating parameters’ boundaries are shown in   
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Table 3-1. The calibration objective is the mean KGE of calibration targets (Table B1). KGE 

(Gupta et al., 2009) is calculated by 

 KGE = 1 − √(𝑟 − 1)2 + (
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
− 1)

2

+ (
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
− 1)

2

 (B-10) 

where r is the Pearson correlation coefficient. 𝜇 and 𝜎 denote the mean and the standard 

deviation of flows, respectively. The subscripts 𝑜𝑏𝑠  and 𝑠𝑖𝑚  refer to observed and 

simulated time series of streamflow, respectively. The calibration targets are compared 

with monthly observations from stations with codes SHPP, SCOO, DLLO, and WSLO 

(Table B2). SHPP is used to calibrate the diversions of DivAgt. SCOO streamflow station 

located below the Hagg reservoir is used to calibrate water releases of ResAgt. Streamflow 

stations, DLLO and WSLO, are used to calibrate simulated streamflow at DLLO and 

WSLO routing outlets. 
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Table B1. Calibration information for two coupled models with GWLF and ABCD, 

respectively. 

Model Mgwlf Mabcd 

Number of parameters 92 64 

Random seeds 5, 10, 13 5, 10, 13 

Population size 200 200 

Maximum generation 100 100 

Initial population sampling method Latin hypercube Latin hypercube 

Number of elites 1 1 

Mutation probability 0.1 0.1 

Crossover probability (uniform) 0.5 0.5 

Indicator KGE KGE 

Calibrate targets 
ResAg, DLLO, DivAg, 

and WSLO 

ResAg, DLLO, DivAg, 

and WSLO 

 

Table B2. Stations’ information and data sources of observed data 

Code  Full station name Station number Data source 

SCOO 
Scoggins Creek below Henry Hagg Lake, 

Oregon 
14202980 USBRa 

DLLO Tualatin River near Dilley, Oregon 14203500 USBRa 

WSLO Tualatin River near West Linn, Oregon 14207500 USBRa 

TRTR 
Barney Reservoir (Trask River) Release to 

Tualatin River 
-- (Bonn, 2020)b 

SHPP 
TVID–Withdrawal at Spring Hill Pump 

Plant 
14204650 (Bonn, 2020)b 

SCO 
Scoggins Dam & Henry Hagg Lake nr 

Forest Grove, Oregon 
-- USBRa 

a The US Bureau of Reclamation (USBR) Hydromet platform: 

 https://www.usbr.gov/pn/hydromet/tuatea.html 
b Monthly median of instantaneous flows is provided in the PDF file. 

 

https://www.usbr.gov/pn/hydromet/tuatea.html
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Appendix C: Supplementary Materials for Chapter 4 

C.1 Derivation of the law of total variance 

 Var(𝐼) = E[Var(𝐼|𝐸𝑀𝑅)] + Var(E[𝐼|𝐸𝑀𝑅]) (C-1) 

To derive the law of total variance (Equation C-1), we first expand Var(𝐼) 

following the definition of variance as shown below. 

 Var(𝐼) = E[𝐼2] − E[𝐼]2 (C-2) 

Then, by applying the law of total expectation (e.g., E[𝑋] = E[E[𝑋|𝑌]]), we can get 

 Var(𝐼) = E[E[𝐼2|𝐸𝑀𝑅]] − E[E[𝐼|𝐸𝑀𝑅]]
2
 (C-3) 

Next, expand the first term again by the definition of variance. 

 Var(𝐼) = E[Var(𝐼|𝐸𝑀𝑅) + E[𝐼|𝐸𝑀𝑅]2] − E[E[𝐼|𝐸𝑀𝑅]]
2
 (C-4) 

Reordering the equation, we then derive the law of total variance. 

 Var(𝐼) = E[Var(𝐼|𝐸𝑀𝑅) + E[𝐼|𝐸𝑀𝑅]2] − E[E[𝐼|𝐸𝑀𝑅]]
2
                    

 = E[Var(𝐼|𝐸𝑀𝑅)] + E[E[𝐼|𝐸𝑀𝑅]2] − E[E[𝐼|𝐸𝑀𝑅]]
2
 

 = E[Var(𝐼|𝐸𝑀𝑅)] + Var(E[𝐼|𝐸𝑀𝑅])                              (C-5) 

C.2 Derivation of the law of total variance with two conditioning random variables 

 𝐸[𝑉𝑎𝑟(𝐼|𝐸𝑀𝑅)] = E[Var(𝐼|𝐸𝑀𝑅, 𝐼𝐶𝑅 )] + E[Var(E[𝐼|𝐸𝑀𝑅, 𝐼𝐶𝑅 ])|𝐸𝑀𝑅)]  

  (C-6) 

The law of total variance (Equation C-1) can be applied to two conditioning random 

variables as shown in Equation C-6. 

From Equation C-1, we know 

 Var(𝐼) = E[Var(𝐼|𝐸𝑀𝑅)] + Var(E[𝐼|𝐸𝑀𝑅]) (C-7) 

where Var(𝐼|𝐸𝑀𝑅) can be further decomposed into: 
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 Var(𝐼|𝐸𝑀𝑅) =  E[Var(𝐼|𝐸𝑀𝑅, 𝐼𝐶𝑅)] +  Var(E[𝐼|𝐸𝑀𝑅, 𝐼𝐶𝑅]) (C-8) 

by applying the law of total variance. Therefore, we can get 

E[Var(𝐼|𝐸𝑀𝑅)] = E[E[Var(𝐼|𝐸𝑀𝑅, 𝐼𝐶𝑅)] +  Var(E[𝐼|𝐸𝑀𝑅, 𝐼𝐶𝑅])]                                 

 = E[E[Var(𝐼|𝐸𝑀𝑅, 𝐼𝐶𝑅)]] + E[Var(E[𝐼|𝐸𝑀𝑅, 𝐼𝐶𝑅])] (C-9) 

From the law of total expectation, we can further remove the double expectation in the first 

term and get 

 E[Var(𝐼|𝐸𝑀𝑅)] = E[Var(𝐼|𝐸𝑀𝑅, 𝐼𝐶𝑅)] + E[Var(E[𝐼|𝐸𝑀𝑅, 𝐼𝐶𝑅])] (C-10) 

Finally, put back the above equation to Equation C-1. 

 Var(𝐼) = E[Var(𝐼|𝐸𝑀𝑅, 𝐼𝐶𝑅)] + E[Var(E[𝐼|𝐸𝑀𝑅, 𝐼𝐶𝑅])] + Var(E[𝐼|𝐸𝑀𝑅]) 

  (C-11) 

C.3 Supplementary figures and tables 

 

Figure C1. An example for the learning component. First, if the flow deviation (𝐷𝑒) is 

greater than 𝐿𝑢, 𝑉 is equal to 1. If 𝐷𝑒 is less than 𝐿𝑙, 𝑉 is equal to -1. Otherwise, 𝑉 is equal 

to 0. Next, we use a ten-year moving window to calculate 𝑉𝑎𝑣𝑔, which serves as a strength 

to drive the changes in diversion reference (𝐷𝑖𝑣𝑟𝑒𝑞,𝑟𝑒𝑓). 
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Figure C2. The relationship between precipitation from November to June vs. annual 

diversion for adaptive behavior curve fitting using quadratic (green dashed line) and linear 

(yellow dotted) functions. 

 

 

Figure C3. Pseudo-code for the reservoir release model. 
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Figure C4. Elbow plot for determining the number of HydroEMRs. 

 

 

Figure C5. Elbow plot for determining the number of ABMEMRs. Note the goal is to 

represent the range of model variability. Therefore, the selected cluster number should 

include the elbow. 
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Figure C6. Calibration (1960 – 1999) and validation (2000 – 2013) monthly time series 

streamflow of two HydroEMRs for three sub-basins, Umtanum, Naches, and Parker. We 

have considered the calibrated minor diversions (Table C5) for the Parker gauge in this 

figure.  

 

 

Figure C7. Performance of GA for hydrological model calibration. Black lines are 

objective values of three random seeds. Grey lines are the standard deviation of within-

population objective values. 
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Figure C8. Performance of GA for the calibration of five coupled models. Black lines are 

objective values of three random seeds and two HydroEMRs. Grey lines are the standard 

deviation of within-population objective values. 

 

Table C1. District area, water rights, and average water diversion of five irrigation districts. 

District Area (ha) 

Water rights (m3/sec × 106)a 

Avg. diversion in 

2001–2010 (m3/sec) Non-

proratableb 
Proratableb Total 

Wapato 77239.11 376.97 431.72 808.69 20.31 

Sunnysid

e 44947.22 357.27 194.61 551.89 15.26 

Roza 38394.95 0 484.76 484.76 10.88 

Kittitas 58025.04 0 414.45 414.45 11.91 

Tieton 17057.5 93.58 37.53 131.11 2.96 
a (USBR, 2012) 
b Proratable water right holders will receive a prorated entitlement during the droughts 

period, while non-proratable water right holders will receive full entitlements. 
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Table C2. Selected GCMs for the climate change scenario setup. 

Selected GCMs 

GISS-E2-H NorESM1-ME HadGEM2-ES GFDL-ESM2G 

CSIRO-Mk3-6-0 NorESM1-M GISS-E2-R IPSL-CM5A-LR 

CCSM4 MIROC5 CESM1-CAM5 FIO-ESM 

MIROC-ESM-CHEM IPSL-CM5A-MR bcc-csm1-1-m MIROC-ESM 

HadGEM2-AO GFDL-CM3 bcc-csm1-1 MRI-CGCM3 



 

 

 

 

1
8
2
 

Table C3. Genetic algorithm setting for calibrating reservoir inflow models, hydrological model, and ABM models. 

Items S1, S2, and S3 Hydrological model1 

ABM models2 －𝑀𝑆, 𝑀𝐴,𝐿 , 𝑀𝐴,𝑄, 𝑀𝐿,𝐿 ,𝑀𝐿,𝑄 

(coupled with a HydroEMR identified from the 

hydrological model calibration) 

Population size 100 100 100 

Maximum 

generation  
100 100 70 

Number of 

simulations per 

evaluation 

-- -- 10 (due to stochastic components) 

Initial seeds 9, 28, 83 9, 28, 83 9, 28, 83 

Initial population 

sampling method 
Latin hypercube Latin hypercube Latin hypercube 

Number of elites 1 1 1 

Mutation probability 0.1 0.1 0.1 

Crossover 

probability (uniform) 
0.5 0.5 0.5 

Objective function Max{KGE} Max{KGEF̅̅ ̅̅ ̅̅ ̅ + 10 × (1 − 𝐷̅)} Max{KGEF&D̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + (1 − 𝐷̅)} 
Number of 

parameters 
11 per S 47 + two 𝑅𝑓

3 10, 20, 25, 35, and 40 for five agent types, respectively. 

1 Include three subbasins, Umtanum, Naches, and Parker. 
2 Include five diversion agents, Kittitas, Tieton, Roza, Wapato, and Sunnyside. 
3Return flow factors (𝑅𝑓) of ABM models are calibrated beforehand with the hydrological model. 

𝐷̅ is the average annual diversion shortage of five diversion agent over the simulation period. 

KGEF̅̅ ̅̅ ̅̅ ̅ is the average KGE value of three subbasins monthly streamflow1. 

KGEF&D̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the average KGE value of three subbasins monthly streamflow1 and five annual diversions2. 
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Table C4. ODD+D description for ABM model. 

Guiding questions  ODD+D model description 
O

v
er

v
ie

w
 

I.i Purpose I.i.a What is the purpose of 

the study? 

To test the hypothesis of the 

relationship between decomposed 

model uncertainty and model 

complexity. 

I.ii.b For whom is the model 

designed? 

Scientists, decision-makers, and 

students/teachers 

I.ii Entities, 

state variables, 

and scales 

I.ii.a What kinds of entities 

are in the model? 

We design five types of irrigation 

diversion agents. An agent 

represents one of the five 

irrigation districts in the Yakima 

River Basin.  

I.ii.b By what attributes 

(i.e., state variables and 

parameters) are these 

entities characterized? 

We design four components: (1) 

learning, (2) adaptive with linear 

or quadratic functions, (3) 

emergency response, and (4) 

stochastic components, where five 

types of agents have different 

components (Table 4-2) 

I.ii.c What are the 

exogenous factors / drivers 

of the model? 

Climate, weather, reservoir 

releases, and streamflow. 

I.ii.d If applicable, how is 

space included in the 

model? 

Agents are defined based on 

irrigation districts’ geolocation 

and space. 

I.ii.e What are the temporal 

and spatial resolutions and 

extents of the model? 

Model runs on a daily scale and 

the decision is made annually. 

Each agent represents one 

irrigation district. 

I.iii Process 

overview and 

scheduling 

I.iii.a What entity does 

what, and in what order? 

If the given agent type has the 

components, the order of the 

process is learning, adaptive or 

emergency response, and 

stochastic components. 

 D
es

ig
n
 C

o
n
ce

p
ts

 

II.i Theoretical 

and Empirical 

Background 

II.i.a Which general 

concepts, theories or 

hypotheses are underlying 

the model’s design at the 

system level or at the 

level(s) of the submodel(s) 

(apart from the decision 

model)? What is the link to 

None. The model is empirically 

designed for testing the 

hypothesis. 
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complexity and the purpose 

of the model? 

II.i.b On what assumptions 

is/are the agents’ decision 

model(s) based? 

The decision-making mechanism 

is derived from historical 

observations. 

II.i.c Why is a/are certain 

decision model(s) chosen? 

The model is designed to compare 

the uncertainty impact of different 

model complexities. 

II.i.d If the model / a 

submodel (e.g., the decision 

model) is based on 

empirical data, where does 

the data come from? 

Hydromet platform. 

II.i.e At which level of 

aggregation were the data 

available? 

No aggregation. The data is at the 

irrigation district’s level.  

 

II.ii Individual 

Decision 

Making 

II.ii.a What are the subjects 

and objects of decision-

making? On which level of 

aggregation is decision-

making modeled? Are 

multiple levels of decision-

making included? 

Single level. 

II.ii.b What is the basic 

rationality behind agents’ 

decision-making in the 

model? Do agents pursue an 

explicit objective or have 

other success criteria? 

The learning process is bounded 

by some expansion of the range 

calculated by the historical data. 

II.ii.c How do agents make 

their decisions? 

Random choice but based on the 

procedure in I.iii.a. 

II.ii.d Do the agents adapt 

their behavior to changing 

endogenous and exogenous 

state variables? And if yes, 

how? 

Yes, through learning and 

adaptive components. 

II.ii.e Do social norms or 

cultural values play a role in 

the decision-making 

process? 

Yes. We consider social norms 

derived from historical diversion 

data. 
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II.ii.f Do spatial aspects 

play a role in the decision 

process? 

The spatial aspects are not 

explicitly designed. 

II.ii.g Do temporal aspects 

play a role in the decision 

process? 

Yes. A ten-year window is used in 

the learning process. 

II.ii.h To which extent and 

how is uncertainty included 

in the agents’ decision 

rules? 

The uncertainty of an agent’s 

decision is based on the calibrated 

parameters in the stochastic 

component. 

II.iii Learning  II.iii.a Is individual learning 

included in the decision 

process? How do 

individuals change their 

decision rules over time as 

consequence of their 

experience? 

Yes, by the learning component. 

II.iii.b Is collective learning 

implemented in the model? 

No 

II.iv Individual 

Sensing 

II.iv.a What endogenous 

and exogenous state 

variables are individuals 

assumed to sense and 

consider in their decisions? 

Is the sensing process 

erroneous? 

Precipitation forecast and 

streamflow deviation from the 

flow target. 

II.iv.b What state variables 

of which other individuals 

can an individual perceive? 

Is the sensing process 

erroneous? 

The interaction is implicitly 

defined by a multivariate normal 

distribution with the covariance 

matrix calculated historical 

diversion data among irrigation 

districts. 

II.iv.c What is the spatial 

scale of sensing? 

The entire model spaces. 

II.iv.d Are the mechanisms 

by which agents obtain 

information modeled 

explicitly, or are individuals 

simply assumed to know 

these variables? 

Individuals are simply assumed to 

know these variables. 

II.iv.e Are costs for 

cognition and costs for 

No. 
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gathering information 

included in the model? 

II.v Individual 

Prediction 

  

II.v.a Which data uses the 

agent to predict future 

conditions? 

Precipitation forecast and their 

experience. 

II.v.b What internal models 

are agents assumed to use to 

estimate future conditions 

or consequences of their 

decisions? 

Four components mentioned in 

I.iii.a. 

II.v.c Might agents be 

erroneous in the prediction 

process, and how is it  

implemented? 

False predict for drought years 

and irrational (stochastic) 

decision-making process. 

II.vi Interaction II.vi.a Are interactions 

among agents and entities 

assumed as direct or 

indirect? 

Indirect through streamflow and 

multivariate normal distribution. 

II.vi.b On what do the 

interactions depend? 

Interaction depends on the 

covariance estimated by the 

historical data. 

II.vi.c If the interactions 

involve communication, 

how are such 

communications 

represented? 

Not applicable. 

II.vi.d If a coordination 

network exists, how does it 

affect the agent behaviour? 

Is the structure of the 

network imposed or 

emergent? 

Agents will share the irrigation 

deficiency based on their water 

rights. 

II.vii 

Collectives 

II.vii.a Do the individuals 

form or belong to 

aggregations that affect, and 

are affected by, the 

individuals? Are these 

aggregations imposed by 

the modeller or do they 

emerge during the 

simulation? 

No. 
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II.vii.b How are collectives 

represented? 

The streamflow at the Parker 

gauge. 

II.viii 

Heterogeneity 

II.viii.a Are the agents 

heterogeneous? If yes, 

which state variables and/or 

processes differ between the 

agents? 

Yes. Each agent has its own 

parameter set. 

II.viii.b Are the agents 

heterogeneous in their 

decision-making? If yes, 

which decision models or 

decision objects differ 

between the agents? 

Yes. Their decision-making 

process depends on their unique 

parameter set. 

II.ix 

Stochasticity 

 

II.ix.a What processes 

(including initialization) are 

modeled by assuming they 

are random or partly 

random? 

Show in the stochastic 

component, where the random 

number is sampled from a 

multivariate normal distribution. 

II.x 

Observation 

II.x.a What data are 

collected from the ABM for 

testing, understanding, and 

analyzing it, and how and 

when are they collected? 

Diversion data from the Hydromet 

platform. 

II.x.b What key results, 

outputs or characteristics of 

the model are emerging 

from the individuals? 

(Emergence) 

The decreasing trend in diversion 

(learning adaptive agents) 

D
et

ai
ls

 

II.i 

Implementation 

Details 

III.i.a How has the model 

been implemented? 

We coded the model in python and 

ran it on the Windows system. 

III.i.b Is the model 

accessible and if so where? 

No. 

 

III.ii 

Initialization 

III.ii.a What is the initial 

state of the model world, i.e. 

at time t=0 of a simulation 

run? 

The historical values of the time 

previous to the beginning of the 

simulation. 

III.ii.b Is initialization 

always the same, or is it 

allowed to vary among 

simulations? 

Yes, it is the same. 

III.ii.c Are the initial values 

chosen arbitrarily or based 

on data? 

Based on the historical data. 
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III.iii Input 

Data 

III.iii.a Does the model use 

input from external sources 

such as data files or other 

models to represent 

processes that change over 

time? 

Yes. The input data includes 

precipitation forecast, reservoir 

releases, and streamflow. 

III.iv 

Submodels 

 

III.iv.a What, in detail, are 

the submodels that 

represent the processes 

listed in ‘Process overview 

and scheduling? 

Please see section 3.2 in the main 

text. 

III.iv.b What are the model 

parameters, their 

dimensions and reference 

values? 

The model dimension varies with 

different model types (Table 4-2).  

III.iv.c How were 

submodels designed or 

chosen, and how were they 

parameterized and then 

tested? 

We designed different 

components to capture the 

historical diversion pattern 

empirically. Parameters are 

calibrated by a genetic algorithm.  

 

Table C5. Calibrated minor diversions during the growing season (April to October) above 

Parker gauge. 

Month 1 2 3 4 5 6 7 8 9 10 11 12 

Minor diversion above 

Parker (m3/sec) 
0 0 0 56.0 42.0 11.2 44.1 43.9 23.8 14.2 0 0 
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Table C6. Genetic algorithm calibration statistics of reservoir inflow models, hydrological 

models, and ABM models. 

Model 

The best 

objective 

value 

Calibration objective 

values (Table C3) 

Average improve 

ratea 

Average within-

population objective 

values standard 

deviationa 

S1 0.85 (0.812, 0.842, 0.85) (0.0, 0.001, 0.0) (0.068, 0.096, 0.101) 

S2 0.894 (0.894, 0.886, 0.838) (0.0, 0.0, 0.001) (0.084, 0.066, 0.052) 

S3 0.818 (0.577, 0.795, 0.818) (0.002, 0.0, 0.0) (0.059, 0.139, 0.139) 

Hydrological 

model 
10.666 

(9.945, 10.212, 

10.666) 
(0.0, 0.0, 0.002) (1.873, 2.618, 4.921) 

H
y
d
ro

E
M

R
1

b
 𝑀𝑆  1.302 (1.302, 1.302, 1.294) (0.0, 0.0, 0.0) (0.036, 0.037, 0.043) 

𝑀𝐴,𝐿  1.351 (1.351, 1.334, 1.312) (0.0, 0.003, 0.0) (0.047, 0.052, 0.056) 

𝑀𝐴,𝑄  1.387 (1.387, 1.366, 1.385) (0.004, 0.0, 0.007) (0.095, 0.081, 0.101) 

𝑀𝐿,𝐿  1.445 (1.445, 1.408, 1.362) (0.005, 0.001, 0.0) (0.071, 0.069, 0.083) 

𝑀𝐿,𝑄  1.327 (1.327, 1.267, 1.287) (0.0, 0.001, 0.0) (0.088, 0.085, 0.107) 

H
y
d
ro

E
M

R
2

b
 𝑀𝑆  1.307 (1.307, 1.292, 1.287) (0.0, 0.0, 0.0) (0.056, 0.041, 0.044) 

𝑀𝐴,𝐿  1.312 (1.311, 1.312, 1.312) (0.0, 0.003, 0.0) (0.048, 0.047, 0.05) 

𝑀𝐴,𝑄  1.4 (1.337, 1.345, 1.4) (0.002, 0.002, 0.0) (0.096, 0.08, 0.116) 

𝑀𝐿,𝐿  1.4 (1.4, 1.388, 1.371) (0.0, 0.0, 0.0) (0.073, 0.067, 0.094) 

𝑀𝐿,𝑄  1.328 (1.326, 1.328, 1.316) (0.005, 0.001, 0.0) (0.087, 0.099, 0.107) 

Three values in a bracket represent the statistics corresponding to three random seeds, 9, 

28, and 83, respectively. 

In the adaptive model, quadratic functions can better capture the dynamics that learning 

behavior captures (higher objective value in 𝑀𝐴,𝑄). However, quadratic functions become 

noised to the learning behavior in the learning adaptive models, where the objective value 

of 𝑀𝐿,𝑄 is lower than 𝑀𝐿,𝐿. 
a The statistics are averaged over the last five generations. 
b HydroEMR1 and HydroEMR2 are identified from the hydrological model calibration. 
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Appendix D: Supplementary Materials for Chapter 5 

D.1 Construction of a state-space model for a given pond network 

A state-space model can linearly describe state (e.g., water level) dynamics, as shown in 

Equations D-1 and D-2. 

 𝒙𝒕 = 𝐴 ∙ 𝒙𝒕−𝟏 + 𝐵𝑢 ∙ 𝒖𝒕−𝟏 + 𝐵𝑤 ∙ 𝒘𝒕−𝟏                    (D-1) 

 𝒚𝒕 = 𝐶 ∙ 𝒙𝒕                                                                      (D-2) 

where 𝒙𝒕 is a state vector, and 𝒚𝒕 is an output vector at the time step 𝑡. 𝒖𝒕−𝟏 is a control 

vector, and 𝒘𝒕−𝟏 is a disturbance vector, respectively. 𝐴, 𝐵𝑢, 𝐵𝑤, and 𝐶 are state matrix, 

control matrix, disturbance matrix, and output matrix, respectively.  

 

 
Figure D1. A three-pond stormwater system for state-space model construction 

demonstration. 𝒘  and 𝒖  are runoffs and outflows, respectively. 𝒙  are states including 

water level (with 𝑤𝑙 superscript) and water quantities in segments of a conduit (with 𝑛𝑐 

superscript).  

 

In a smart stormwater system context, as shown in a three-pond stormwater system 

in Figure D1,  𝒙 consists of pond water level states (𝑥𝑤𝑙) and water quantity states of 

segments of a conduct 𝑐 (𝑥𝑐
𝑛𝑐 ). Terms 𝒘 and 𝒖 are runoffs and outflows of each pond, 
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respectively. 𝐴, 𝐵𝑢, and 𝐵𝑤 describe the topology of a given pond network. 𝐶 is a matrix 

to collect 𝑥𝑤𝑙  from 𝒙  (contain 𝑥𝑤𝑙  and 𝑥𝑐
𝑛𝑐 ), where 𝒚  is defined as the water level 

measurements acquired from sensors (ignoring sensor noises). We demonstrate a state-

space model construction for a given stormwater system below, where Equation D-1 can 

be rewritten into Equation D-3 for the stormwater system shown in Figure D1. 

 𝒙𝒕 =

[
 
 
 
 
 
 
𝑥2
𝑤𝑙

𝑥𝑐2,1
𝑛𝑐

𝑥𝑐2,2
𝑛𝑐

𝑥3
𝑤𝑙

𝑥𝑐3,1
𝑛𝑐

𝑥1 
𝑤𝑙 ]
 
 
 
 
 
 

t

=

[
 
 
 
 
 
 
1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

0
𝑎𝑠,2

𝑛𝑐2𝑎𝑠,1

𝑎𝑠,2

𝑛𝑐2𝑎𝑠,1
0

𝑎𝑠,3

𝑛𝑐3𝑎𝑠,1
1
]
 
 
 
 
 
 

⏞                      
𝐴

∙

[
 
 
 
 
 
 
𝑥2
𝑤𝑙

𝑥𝑐2,1
𝑛𝑐

𝑥𝑐2,2
𝑛𝑐

𝑥3
𝑤𝑙

𝑥𝑐3,1
𝑛𝑐

𝑥1 
𝑤𝑙 ]
 
 
 
 
 
 

t−1

                          

 +

[
 
 
 
 
 
0 1 0
0 −1 0
0 0 0
0 0 1
0 0 −1
1 0 0 ]

 
 
 
 
 

⏞        
𝐵𝑢

∙ [

𝑢1
𝑢2
𝑢3
]

t−1

+

[
 
 
 
 
 
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0
1 0 0]

 
 
 
 
 

⏞      
𝐵𝑤

∙ [

𝑤1
𝑤2
𝑤3
]

𝑡−1

 (D-3) 

Note that 𝒙𝒕 , 𝒖𝒕−𝟏, and 𝒘𝒕−𝟏  are represented in the water level change of their 

corresponding ponds in a length unit (i.e., cm). For example, 𝑤1,𝑡 is expressed in the water 

level change of Pond 1 caused by the runoff at time 𝑡. 𝑥𝑐2
𝑛𝑐 is depicted by the water level 

change of Pond 2. Therefore, we have conversion factors 
𝑎𝑠,2

𝑎𝑠,1
 and 

𝑎𝑠,3

𝑎𝑠,1
 in the last row of 

matrix 𝐴 to convert the water level change of Pond 2 and 3 to the water level change of 

Pond 1 when calculating the inflow of Pond 1 from conduits 2 and 3. The term 
1

𝑛𝑐
 is for a 

linear routing process (Equation D-4): 
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 𝐼𝑐,𝑡 =
1

𝑛𝑐
∑ 𝑥𝑐𝑖,𝑡
𝑛𝑐
𝑖=1  (D-4) 

where 𝐼𝑐  is the inflow from the conduit 𝑐 , presented in the water level change of the 

destination pond. To provide a more intuitive presentation of the water level dynamics of 

a pond, we show 𝑥1,𝑡 
𝑤𝑙  calculation in Equation D-5. 

 

𝑥1,𝑡 
𝑤𝑙 = 𝑥1,𝑡−1 

𝑤𝑙 +
𝑎𝑠,2

𝑛𝑐2𝑎𝑠,1
(𝑥𝑐2,1,𝑡−1
𝑛𝑐 + 𝑥𝑐2,2,𝑡−1

𝑛𝑐 )
⏞                

Conduit inflow from Pond 2

+
𝑎𝑠,3

𝑛𝑐3𝑎𝑠,1
(𝑥𝑐3,1
𝑛𝑐 )

⏞        
Conduit inflow from Pond 3

+ 𝑢1,𝑡−1⏞  
Outflow 

+ 𝑤1,𝑡−1⏞  
Runoff

⏟                                            
Water level change of Pond 1 from different sources

  (D-5) 

where outflow 𝑢1,𝑡−1 is a nonpositive value. Equation D-2 is expanded for Figure D1 as 

shown below. 

 

 𝒚𝒕 = [

𝑥1 
𝑤𝑙

𝑥2
𝑤𝑙

𝑥3
𝑤𝑙

]

𝑡

= [
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0

] ∙

[
 
 
 
 
 
 
𝑥2
𝑤𝑙

𝑥𝑐2,1
𝑛𝑐

𝑥𝑐2,2
𝑛𝑐

𝑥3
𝑤𝑙

𝑥𝑐3,1
𝑛𝑐

𝑥1 
𝑤𝑙 ]
 
 
 
 
 
 

𝑡
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D.2 Time-invariant linear quadratic gaussian (LQG) controller 

The LQG controller that we used in this study is formulated as the following. 

 

 𝒙̂𝒕 = 𝐴 ∙ 𝒙̂𝒕−𝟏 + 𝐵𝑢 ∙ 𝒖𝒕−𝟏 + 𝐵𝑤 ∙ 𝒘𝒕−𝟏 + 𝐿 ∙ 𝒛𝒕−𝟏 (D-6) 

 𝒚̂𝒕 = 𝐶 ∙ 𝒙̂𝒕                                                                      (D-7)  

 𝒖̂𝒕 = −𝐾 ∙ 𝒙̂𝒕 + 𝐾𝑟 ∙ 𝓻𝒕 + 𝐾𝑤 ∙ 𝒘̃𝒕                             (D-8) 

 𝒛𝒕 = 𝒚𝒕 − 𝒚̂𝒕                                                                  (D-9) 

The LQG controller consists of a linear quadratic estimator (LQE; Equation D-6) and a 

linear quadratic regulator (LQR; Equation D-8).  Terms 𝒙̂𝒕 and 𝒚̂𝒕 are model estimates for 

𝒙𝒕 and 𝒚𝒕, respectively. 𝒖̂𝒕 is the optimal control of outflows given the objective function, 

𝐽: 

 𝐽 = 𝒙̂𝑻
T𝑄𝒙̂𝑻 + ∑ (𝒙̂𝒕

T𝑄𝒙̂𝒕 + 𝒖̂𝒕
T𝑅𝒖̂𝒕)

𝑇−1
𝑡=1    (D-10) 

 In this study, the weight matrixes of the control error (𝑄) and the control cost (𝑅) 

are manually tuned to the control needs and defined as: 

 𝑄 = 𝑑𝑖𝑎𝑔([1, 1, 1, 100, 100, 900, 250, 1, 10])      (D-11) 

 𝑅 = 𝑑𝑖𝑎𝑔([1, 3, 50, 30, 15, 120, 50, 20000, 10]) (D-12) 

where 𝑑𝑖𝑎𝑔 stands for diagonal matrix. 

In the following sections, we will show the equations for Kalman gain (𝐿), feedback gain 

(𝐾), feedforward gain of reference tracking (𝐾𝑟), and feedforward gain of disturbance 

cancelation (𝐾𝑤). 
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D.2.1 LQE and Kalman gain (L): 

The core of LQE is the Kalman filter, which can assimilate measurements into model 

prediction, as shown in Equation D-6. This study solves Kalman gain (𝐿) for a steady-state 

time-invariant system: 

 𝐿 = 𝜉𝑋𝐶
T(𝐶𝜉𝑋𝐶

T + 𝐶𝑜𝑣𝑉)
−1 (D-13) 

where 𝐶𝑜𝑣𝑉 is the covariance matrix for sensor noises. In our case, 𝐶𝑜𝑣𝑉 is equal to 𝐼𝑛 ∙

𝝈𝒔
2, where 𝐼𝑛 is the identity matrix with size equal to the number of sensors (𝑛) and 𝝈𝒔 is a 

vector of the standard deviation of sensor white noises. 𝜉𝑋 is computed by a discrete time 

algebraic Riccati equation: 

 𝜉𝑋 = 𝐴[𝜉𝑋 − 𝜉𝑋𝐶
T(𝐶𝜉𝑋𝐶

T + 𝐶𝑜𝑣𝑉)
−1𝐶𝜉𝑋]𝐴

T + 𝐵𝑤𝐶𝑜𝑣𝑤𝐵𝑤
T 

where 𝐶𝑜𝑣𝑊 is the covariance matrix for weather forecast uncertainties. We define it as  

 𝐶𝑜𝑣𝑊 = 𝑑𝑖𝑎𝑔([𝜎𝑤,1, 𝜎𝑤,2, … , 𝜎𝑤,8, 𝜎𝑤,9]) (D-14) 

where 𝝈𝒘 is a vector of the forecast uncertainties at ponds. 

D.2.2 LQR and 𝑲 

LQR is a closed-loop feedback control method that will use 𝒙̂𝒕 from LQE to determine the 

optimal control given 𝐽 (Equation D-10). The analytical solution for this optimal control is: 

 𝒖̂𝐭 = −𝐾𝒙̂𝒕 (D-15) 

where 𝐾 is solved by a discrete time algebraic Riccati equation shown below. 

 𝐾 = (𝐵𝑢
T𝜉𝑃𝐵𝑢 + 𝑅)

−1𝐵𝑢
T𝜉𝑃𝐴                                    (D-16) 

 𝜉𝑃 = 𝐴
T[𝜉𝑃 − 𝜉𝑃𝐵𝑢(𝐵𝑢

T𝜉𝑃𝐵𝑢 + 𝑅)
−1𝐵𝑢

T𝜉𝑃]𝐴 + 𝑄 (D-17) 
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D.2.3 Feedforward control for reference tracking, 𝑲𝒓 

In our problem, instead of controlling 𝒙𝒕 to be 0, we want to control the water levels of 

ponds to desired reference values 𝓻𝒕 (tracking 𝓻𝒕). We called this reference tracking, in 

which we approach it by a feedforward control. A control that uses the reference value at 

the next time step to inform the current control decision. Now the optimal control becomes: 

 𝒖̂𝐭 = −𝐾𝒙̂𝒕 + 𝐾𝑟𝓻𝒕 (D-18) 

where 𝐾𝑟 is equal to  

 𝐾𝑟 = [𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)
−1𝐵𝑢]

−1 (D-19) 

in a discrete system under a stability assumption. We show the derivation in the following. 

First, we plug Equation D-18 into a state-space model (without the disturbance term) 

and solve Equation D-21 for the steady-state, where 𝒙𝒕 = 𝒙𝒕−𝟏 = 𝒙, 𝒚𝒕 = 𝒚𝒕−𝟏 = 𝒚, and 

𝓻𝒕 = 𝓻. We got  

 𝒙 = 𝐴𝒙 + 𝐵𝑢𝒖                    

= 𝐴𝒙 + 𝐵𝑢(−𝐾𝒙+ 𝐾𝑟𝓻)  

                     = (𝐴 − 𝐵𝑢𝐾)𝒙 + 𝐵𝑢𝐾𝑟𝓻              (D-20) 

where we assume a perfect prediction model (𝒙̂ = 𝒙 and 𝒖̂ = 𝒖). Next, we collect 𝒙-

related terms and put them together, we have 

 (𝐼 − 𝐴 + 𝐵𝑢𝐾)𝒙 = 𝐵𝑢𝐾𝑟𝓻 (D-21) 

 𝒙 = (𝐼 − 𝐴 + 𝐵𝑢𝐾)
−1𝐵𝑢𝐾𝑟𝓻  (D-22) 

Next, we plug 𝒙 back into Equation D-2, we have 

 𝒚 = 𝐶𝒙 = 𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)
−1𝐵𝑢𝐾𝑟𝓻 (D-23) 
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Since 𝓻 is the control target, 𝒚∞ is equal to 𝓻 in the steady state in a stable system; hence, 

we got  

 𝒚∞ = 𝓻 = 𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)
−1𝐵𝑢𝐾𝑟𝓻 (D-24) 

 𝐾𝑟 = [𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)
−1𝐵𝑢]

−1           (D-25) 

Done. 

D.2.4 Feedforward control for disturbance cancelation, 𝑲𝒘 

This section illustrates a feedforward control method to incorporate weather forecasts (𝒘̃𝒕) 

into the optimal control. This is called disturbance cancelation in control theory, in which 

runoffs (𝒘𝒕) are viewed as disturbances to the control system. Now the optimal control 

becomes: 

 𝒖̂𝐭 = −𝐾𝒙̂𝒕 + 𝐾𝑤𝒘̃𝒕 (D-26) 

where 𝐾𝑊 is equal to  

 𝐾𝑊 = −[𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)
−1𝐵𝑢]

−1𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)
−1𝐵𝑤 (D-27) 

in a discrete system under a stability assumption. We show the derivation in the following. 

 First, we plug Equation D-26 into the state-space model (Equation D-1) and solve 

Equation D-21 for the steady-state, where 𝒙𝒕 = 𝒙𝒕−𝟏 = 𝒙 and 𝒚𝒕 = 𝒚𝒕−𝟏 = 𝒚. We got  

𝒙 = 𝐴𝒙 + 𝐵𝑢𝒖 + 𝐵𝑤𝒘                               

= 𝐴𝒙 + 𝐵𝑢(−𝐾𝒙 + 𝐾𝑤𝒘) + 𝐵𝑤𝒘  

                     = (𝐴 − 𝐵𝑢𝐾)𝒙 + 𝐵𝑢𝐾𝑤𝒘+ 𝐵𝑤𝒘              (D-28) 



 

197 

 

 

where we assume a perfect forecast (𝒘̃𝒕 = 𝒘𝒕 = 𝒘) and a perfect prediction model (𝒙̂𝒕 =

𝒙𝒕 = 𝒙 and 𝒖̂𝒕 = 𝒖𝒕 = 𝒖). Next, we collect 𝒙-related terms and put them together, we have 

 (𝐼 − 𝐴 + 𝐵𝑢𝐾)𝒙 = 𝐵𝑢𝐾𝑤𝒘+ 𝐵𝑤𝒘 (D-29) 

 𝒙 = (𝐼 − 𝐴 + 𝐵𝑢𝐾)
−1𝐵𝑢𝐾𝑤𝒘+ (𝐼 − 𝐴 + 𝐵𝑢𝐾)

−1𝐵𝑤𝒘  (D-30) 

Next, we plug 𝒙 back into Equation D-2, we have 

 𝒚 = 𝐶𝒙 = 𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)
−1𝐵𝑢𝐾𝑤𝒘+ 𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)

−1𝐵𝑤𝒘 (D-31) 

Since we want to cancel 𝒘 using 𝐾𝑤 and 𝒚∞ is zero in the steady state, we got  

 𝒚∞ = 0 = 𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)
−1𝐵𝑢𝐾𝑤𝒘+ 𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)

−1𝐵𝑤𝒘 (D-32) 

 𝐾𝑊 = −[𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)
−1𝐵𝑢]

−1𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)
−1𝐵𝑤                 (D-33) 

Done. 

D.2.5 Linear combination of 𝑲, 𝑲𝒓, and 𝑲𝒘 

From the above subsection, we derive 𝐾𝑟 and 𝐾𝑤 independently. In our study, we applied 

feedback control (i.e., 𝐾) with both feedforward controls (i.e., 𝐾𝑟 and 𝐾𝑤). Here, we want 

to show that it is mathematically correct for this linear combination of optimal control as 

one might notice that 𝐾𝑟 is based on the assumption of 𝒚∞ = 𝓻 and 𝐾𝑤 is based on the 

assumption of 𝒚∞ = 0. To prove the correctness, we can solve 𝐾𝑤′ given 𝒚∞ = 𝓻 and 

compare 

 𝒖′ = −𝐾𝒙 + 𝐾𝑤′𝒘  (D-34) 

with  

 𝒖 = −𝐾𝐱 + 𝐾𝑟𝓻 + 𝐾𝑤𝒘 (D-35) 

Following the similar procedure from Equation D-28 to D-31, we have 

 𝒚 = 𝐶𝒙 = 𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)
−1𝐵𝑢𝐾𝑤′𝒘 + 𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)

−1𝐵𝑤𝒘 (D-36) 
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Now, instead of  𝒚∞ = 0, we solve 𝐾𝑤′ with 𝒚∞ = 𝓻. We got 

 𝒚∞ = 𝓻 = 𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)
−1𝐵𝑢𝐾𝑤′𝒘 + 𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)

−1𝐵𝑤𝒘 (D-37) 

 𝐾𝑤
′ 𝒘 = [𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)

−1𝐵𝑢]
−1[𝓻 − 𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)

−1𝐵𝑤𝒘] (D-38) 

Next, we plug Equation D-38 back into Equation D-34, we have 

𝒖′ = −𝐾𝒙 + [𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)
−1𝐵𝑢]

−1[𝓻 − 𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)
−1𝐵𝑤𝒘] (D-39) 

Also, we can compute Equation D-35 by plugging in 𝐾𝑟 and 𝐾𝑤 from Equations D-25 and 

D-33, respectively, where we got 

 𝒖 = −𝐾𝒙 + [𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)
−1𝐵𝑢]

−1𝓻                                        

 −[𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)
−1𝐵𝑢]

−1𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)
−1𝐵𝑤𝒘 (D-40) 

𝒖 = −𝐾𝒙 + [𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)
−1𝐵𝑢]

−1[𝓻 − 𝐶(𝐼 − 𝐴 + 𝐵𝑢𝐾)
−1𝐵𝑤𝒘] (D-41) 

We found that 𝒖′ and 𝒖 are equivalent to each other. Therefore, we have shown that we 

can linearly combine feedback control (i.e., 𝐾) with both feedforward controls (i.e., 𝐾𝑟 and 

𝐾𝑤).  
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D.3 MIQCP problem for solving FDI in a smart stormwater system 

Objective: 

 𝑂𝑏𝑗 = 𝑀𝑎𝑥 {∑𝑦𝑠target,𝑡
𝑠𝑖𝑚 }                                                   (D-42) 

Subject to: 

 𝒙𝒕 = 𝐴 ∙ 𝒙𝒕−𝟏 + 𝐵𝑢 ∙ 𝒖𝒕−𝟏 + 𝐵𝑤 ∙ 𝒘𝒕−𝟏                    (D-43) 

 𝒚𝒕
𝒔𝒊𝒎 = 𝐶 ∙ 𝒙𝒕                                                                           (D-44) 

 𝒚𝒕 = Γ𝑡
h ∙ (𝒚𝒕

𝒔𝒊𝒎) + Γ𝑡
𝑎 ∙ 𝒚𝒕

𝒂                                          (D-45) 

  

 𝒙̂𝒕 = 𝐴 ∙ 𝒙̂𝒕−𝟏 + 𝐵𝑢 ∙ 𝒖𝒕−𝟏 + 𝐵𝑤 ∙ 𝒘𝒕−𝟏 + 𝐿 ∙ 𝒛𝒕−𝟏 (D-46) 

 𝒛𝒕 = 𝒚𝒕 − 𝒚̂𝒕                                                                  (D-47)  

 𝒚̂𝒕 = 𝐶 ∙ 𝒙̂𝒕                                                                      (D-48) 

 𝒖̂𝒕 = −𝐾 ∙ 𝒙̂𝒕 + 𝐾𝑟 ∙ 𝓻𝒕 + 𝐾𝑤 ∙ 𝒘̃𝒕                             (D-49) 

 

 𝒖𝒕 = max(𝑚𝑖𝑛(0, 𝒖̂𝒕) , −𝒖𝒕
𝒂𝒘, −𝒖𝒕

𝒖𝒄 )                     (D-50) 

 𝒖𝒕
𝒂𝒘 = 𝒚𝒕

𝒔𝒊𝒎                                                                          (D-51) 

 𝒖𝒕
𝒖𝒄 = 𝒄𝒈 × 𝝁 × 𝒂𝒈 ×√2𝑔𝒚𝒕

𝒂𝒄𝒕 × (
𝑑𝑡

𝒂𝒔
)                        (D-52) 

 𝒚𝒕
𝒂𝒄𝒕 = min(𝒚𝒎𝒂𝒙, 𝑚𝑎𝑥(0, 𝒚𝒕

𝒔𝒊𝒎))                                   (D-53) 

                        𝒛𝒕
T ∙ 𝒢−1 ∙ 𝒛𝒕 ≤ 𝐸𝑟𝑟

𝑎  (D-54) 

 𝒙𝐭𝐬 = 𝒙𝐭𝐬 = 𝒙𝐭𝐬
𝒉 , 𝒖𝐭𝐬 = 𝒖𝐭𝐬

𝒉 , 𝑡 ∈ 𝒯a = {𝑡𝑠 + 1, 𝑡𝑠 + 2,… , 𝑡𝑠 + 𝑇
𝑎} (D-55) 

 



 

200 

 

 

D.4 Supplementary figures and tables 

Figure D2. SWMM model simulated water levels (solid lines filled with color) and 

outflows (dotted lines) of each pond with a 2-year-24-hour design storm (blue bars).  

 

 

 
Figure D3. SWMM model simulated water levels (solid lines filled with color) and 

outflows (dotted lines) of each pond with a 25-year-24-hour design storm (blue bars). 
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Table D1. The design stormwater system configurations. 

Item 

Storage 

capacity  

[m3] 

Maximum 

depth  

[m] 

Pond 

surface area  

[m2] 

Inverted 

elevation 

[m] 

Outflow conduit 

diameter  

[m] 

Subcatch-

ment area  

[ha] 

Subcatch- 

ment slope 

[%] 

Pond 1 46843.00 2.40 19517.92 108.50 0.70 19.86 2.40 

Pond 2 378.00 0.60 630.00 111.00 0.61 1.78 2.43 

Pond 3 12310.00 1.80 6838.89 119.00 0.61 22.26 3.31 

Pond 4 320.00 0.40 800.00 122.50 0.91 3.37 3.17 

Pond 5 300.00 0.40 750.00 112.20 0.91 2.39 2.45 

Pond 6 320.04 0.91 350.00 111.00 0.91 1.15 3.14 

Pond 7 2262.00 1.20 1885.00 112.00 0.91 14.22 3.11 

Pond 8 6927.00 1.80 3848.33 115.00 0.46 3.15 3.71 

Pond 9 1100.00 1.10 1000.00 112.20 0.91 12.84 2.83 
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